Upload results for model ai21labs/AI21-Jamba-1.5-Mini (#935)
Browse files- Upload results for model ai21labs/AI21-Jamba-1.5-Mini (33d652661712914eec21fc1c83a4404e33f90613)
data/ai21labs/AI21-Jamba-1.5-Mini/orig/results_24-10-04-15:35:07/ai21labs__AI21-Jamba-1.5-Mini/results_2024-10-04T15-49-34.284921.json
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"results": {
|
| 3 |
+
"logiqa2_base": {
|
| 4 |
+
"alias": "logiqa2_base",
|
| 5 |
+
"acc,none": 0.41603053435114506,
|
| 6 |
+
"acc_stderr,none": 0.012435681216024655
|
| 7 |
+
},
|
| 8 |
+
"logiqa_base": {
|
| 9 |
+
"alias": "logiqa_base",
|
| 10 |
+
"acc,none": 0.31150159744408945,
|
| 11 |
+
"acc_stderr,none": 0.01852429117602583
|
| 12 |
+
},
|
| 13 |
+
"lsat-ar_base": {
|
| 14 |
+
"alias": "lsat-ar_base",
|
| 15 |
+
"acc,none": 0.22608695652173913,
|
| 16 |
+
"acc_stderr,none": 0.027641785707241334
|
| 17 |
+
},
|
| 18 |
+
"lsat-lr_base": {
|
| 19 |
+
"alias": "lsat-lr_base",
|
| 20 |
+
"acc,none": 0.3431372549019608,
|
| 21 |
+
"acc_stderr,none": 0.02104322799385556
|
| 22 |
+
},
|
| 23 |
+
"lsat-rc_base": {
|
| 24 |
+
"alias": "lsat-rc_base",
|
| 25 |
+
"acc,none": 0.4052044609665427,
|
| 26 |
+
"acc_stderr,none": 0.029988418521912065
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"group_subtasks": {
|
| 30 |
+
"logiqa2_base": [],
|
| 31 |
+
"logiqa_base": [],
|
| 32 |
+
"lsat-ar_base": [],
|
| 33 |
+
"lsat-lr_base": [],
|
| 34 |
+
"lsat-rc_base": []
|
| 35 |
+
},
|
| 36 |
+
"configs": {
|
| 37 |
+
"logiqa2_base": {
|
| 38 |
+
"task": "logiqa2_base",
|
| 39 |
+
"tag": "logikon-bench",
|
| 40 |
+
"group": "logikon-bench",
|
| 41 |
+
"dataset_path": "logikon/logikon-bench",
|
| 42 |
+
"dataset_name": "logiqa2",
|
| 43 |
+
"test_split": "test",
|
| 44 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
| 45 |
+
"doc_to_target": "{{answer}}",
|
| 46 |
+
"doc_to_choice": "{{options}}",
|
| 47 |
+
"description": "",
|
| 48 |
+
"target_delimiter": " ",
|
| 49 |
+
"fewshot_delimiter": "\n\n",
|
| 50 |
+
"num_fewshot": 0,
|
| 51 |
+
"metric_list": [
|
| 52 |
+
{
|
| 53 |
+
"metric": "acc",
|
| 54 |
+
"aggregation": "mean",
|
| 55 |
+
"higher_is_better": true
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"output_type": "multiple_choice",
|
| 59 |
+
"repeats": 1,
|
| 60 |
+
"should_decontaminate": false,
|
| 61 |
+
"metadata": {
|
| 62 |
+
"version": 0.0
|
| 63 |
+
}
|
| 64 |
+
},
|
| 65 |
+
"logiqa_base": {
|
| 66 |
+
"task": "logiqa_base",
|
| 67 |
+
"tag": "logikon-bench",
|
| 68 |
+
"group": "logikon-bench",
|
| 69 |
+
"dataset_path": "logikon/logikon-bench",
|
| 70 |
+
"dataset_name": "logiqa",
|
| 71 |
+
"test_split": "test",
|
| 72 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
| 73 |
+
"doc_to_target": "{{answer}}",
|
| 74 |
+
"doc_to_choice": "{{options}}",
|
| 75 |
+
"description": "",
|
| 76 |
+
"target_delimiter": " ",
|
| 77 |
+
"fewshot_delimiter": "\n\n",
|
| 78 |
+
"num_fewshot": 0,
|
| 79 |
+
"metric_list": [
|
| 80 |
+
{
|
| 81 |
+
"metric": "acc",
|
| 82 |
+
"aggregation": "mean",
|
| 83 |
+
"higher_is_better": true
|
| 84 |
+
}
|
| 85 |
+
],
|
| 86 |
+
"output_type": "multiple_choice",
|
| 87 |
+
"repeats": 1,
|
| 88 |
+
"should_decontaminate": false,
|
| 89 |
+
"metadata": {
|
| 90 |
+
"version": 0.0
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"lsat-ar_base": {
|
| 94 |
+
"task": "lsat-ar_base",
|
| 95 |
+
"tag": "logikon-bench",
|
| 96 |
+
"group": "logikon-bench",
|
| 97 |
+
"dataset_path": "logikon/logikon-bench",
|
| 98 |
+
"dataset_name": "lsat-ar",
|
| 99 |
+
"test_split": "test",
|
| 100 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
| 101 |
+
"doc_to_target": "{{answer}}",
|
| 102 |
+
"doc_to_choice": "{{options}}",
|
| 103 |
+
"description": "",
|
| 104 |
+
"target_delimiter": " ",
|
| 105 |
+
"fewshot_delimiter": "\n\n",
|
| 106 |
+
"num_fewshot": 0,
|
| 107 |
+
"metric_list": [
|
| 108 |
+
{
|
| 109 |
+
"metric": "acc",
|
| 110 |
+
"aggregation": "mean",
|
| 111 |
+
"higher_is_better": true
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"output_type": "multiple_choice",
|
| 115 |
+
"repeats": 1,
|
| 116 |
+
"should_decontaminate": false,
|
| 117 |
+
"metadata": {
|
| 118 |
+
"version": 0.0
|
| 119 |
+
}
|
| 120 |
+
},
|
| 121 |
+
"lsat-lr_base": {
|
| 122 |
+
"task": "lsat-lr_base",
|
| 123 |
+
"tag": "logikon-bench",
|
| 124 |
+
"group": "logikon-bench",
|
| 125 |
+
"dataset_path": "logikon/logikon-bench",
|
| 126 |
+
"dataset_name": "lsat-lr",
|
| 127 |
+
"test_split": "test",
|
| 128 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
| 129 |
+
"doc_to_target": "{{answer}}",
|
| 130 |
+
"doc_to_choice": "{{options}}",
|
| 131 |
+
"description": "",
|
| 132 |
+
"target_delimiter": " ",
|
| 133 |
+
"fewshot_delimiter": "\n\n",
|
| 134 |
+
"num_fewshot": 0,
|
| 135 |
+
"metric_list": [
|
| 136 |
+
{
|
| 137 |
+
"metric": "acc",
|
| 138 |
+
"aggregation": "mean",
|
| 139 |
+
"higher_is_better": true
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"output_type": "multiple_choice",
|
| 143 |
+
"repeats": 1,
|
| 144 |
+
"should_decontaminate": false,
|
| 145 |
+
"metadata": {
|
| 146 |
+
"version": 0.0
|
| 147 |
+
}
|
| 148 |
+
},
|
| 149 |
+
"lsat-rc_base": {
|
| 150 |
+
"task": "lsat-rc_base",
|
| 151 |
+
"tag": "logikon-bench",
|
| 152 |
+
"group": "logikon-bench",
|
| 153 |
+
"dataset_path": "logikon/logikon-bench",
|
| 154 |
+
"dataset_name": "lsat-rc",
|
| 155 |
+
"test_split": "test",
|
| 156 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
| 157 |
+
"doc_to_target": "{{answer}}",
|
| 158 |
+
"doc_to_choice": "{{options}}",
|
| 159 |
+
"description": "",
|
| 160 |
+
"target_delimiter": " ",
|
| 161 |
+
"fewshot_delimiter": "\n\n",
|
| 162 |
+
"num_fewshot": 0,
|
| 163 |
+
"metric_list": [
|
| 164 |
+
{
|
| 165 |
+
"metric": "acc",
|
| 166 |
+
"aggregation": "mean",
|
| 167 |
+
"higher_is_better": true
|
| 168 |
+
}
|
| 169 |
+
],
|
| 170 |
+
"output_type": "multiple_choice",
|
| 171 |
+
"repeats": 1,
|
| 172 |
+
"should_decontaminate": false,
|
| 173 |
+
"metadata": {
|
| 174 |
+
"version": 0.0
|
| 175 |
+
}
|
| 176 |
+
}
|
| 177 |
+
},
|
| 178 |
+
"versions": {
|
| 179 |
+
"logiqa2_base": 0.0,
|
| 180 |
+
"logiqa_base": 0.0,
|
| 181 |
+
"lsat-ar_base": 0.0,
|
| 182 |
+
"lsat-lr_base": 0.0,
|
| 183 |
+
"lsat-rc_base": 0.0
|
| 184 |
+
},
|
| 185 |
+
"n-shot": {
|
| 186 |
+
"logiqa2_base": 0,
|
| 187 |
+
"logiqa_base": 0,
|
| 188 |
+
"lsat-ar_base": 0,
|
| 189 |
+
"lsat-lr_base": 0,
|
| 190 |
+
"lsat-rc_base": 0
|
| 191 |
+
},
|
| 192 |
+
"higher_is_better": {
|
| 193 |
+
"logiqa2_base": {
|
| 194 |
+
"acc": true
|
| 195 |
+
},
|
| 196 |
+
"logiqa_base": {
|
| 197 |
+
"acc": true
|
| 198 |
+
},
|
| 199 |
+
"lsat-ar_base": {
|
| 200 |
+
"acc": true
|
| 201 |
+
},
|
| 202 |
+
"lsat-lr_base": {
|
| 203 |
+
"acc": true
|
| 204 |
+
},
|
| 205 |
+
"lsat-rc_base": {
|
| 206 |
+
"acc": true
|
| 207 |
+
}
|
| 208 |
+
},
|
| 209 |
+
"n-samples": {
|
| 210 |
+
"lsat-rc_base": {
|
| 211 |
+
"original": 269,
|
| 212 |
+
"effective": 269
|
| 213 |
+
},
|
| 214 |
+
"lsat-lr_base": {
|
| 215 |
+
"original": 510,
|
| 216 |
+
"effective": 510
|
| 217 |
+
},
|
| 218 |
+
"lsat-ar_base": {
|
| 219 |
+
"original": 230,
|
| 220 |
+
"effective": 230
|
| 221 |
+
},
|
| 222 |
+
"logiqa_base": {
|
| 223 |
+
"original": 626,
|
| 224 |
+
"effective": 626
|
| 225 |
+
},
|
| 226 |
+
"logiqa2_base": {
|
| 227 |
+
"original": 1572,
|
| 228 |
+
"effective": 1572
|
| 229 |
+
}
|
| 230 |
+
},
|
| 231 |
+
"config": {
|
| 232 |
+
"model": "local-completions",
|
| 233 |
+
"model_args": "base_url=http://localhost:8080/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=ai21labs/AI21-Jamba-1.5-Mini,trust_remote_code=True",
|
| 234 |
+
"batch_size": "1",
|
| 235 |
+
"batch_sizes": [],
|
| 236 |
+
"device": null,
|
| 237 |
+
"use_cache": null,
|
| 238 |
+
"limit": null,
|
| 239 |
+
"bootstrap_iters": 100000,
|
| 240 |
+
"gen_kwargs": null,
|
| 241 |
+
"random_seed": 0,
|
| 242 |
+
"numpy_seed": 1234,
|
| 243 |
+
"torch_seed": 1234,
|
| 244 |
+
"fewshot_seed": 1234
|
| 245 |
+
},
|
| 246 |
+
"git_hash": "d7733d8",
|
| 247 |
+
"date": 1728048912.9684126,
|
| 248 |
+
"pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, May 20 2024, 08:58:58) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H100\nGPU 1: NVIDIA H100\n\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 128\nListe der Online-CPU(s): 0-127\nThread(s) pro Kern: 2\nKern(e) pro Socket: 32\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: AuthenticAMD\nProzessorfamilie: 25\nModell: 17\nModellname: AMD EPYC 9354 32-Core Processor\nStepping: 1\nCPU MHz: 3800.000\nMaximale Taktfrequenz der CPU: 3800,0000\nMinimale Taktfrequenz der CPU: 400,0000\nBogoMIPS: 6500.00\nVirtualisierung: AMD-V\nL1d Cache: 32K\nL1i Cache: 32K\nL2 Cache: 1024K\nL3 Cache: 32768K\nNUMA-Knoten0 CPU(s): 0-31,64-95\nNUMA-Knoten1 CPU(s): 32-63,96-127\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
| 249 |
+
"transformers_version": "4.45.1",
|
| 250 |
+
"upper_git_hash": null,
|
| 251 |
+
"tokenizer_pad_token": [
|
| 252 |
+
"<|pad|>",
|
| 253 |
+
"0"
|
| 254 |
+
],
|
| 255 |
+
"tokenizer_eos_token": [
|
| 256 |
+
"<|endoftext|>",
|
| 257 |
+
"2"
|
| 258 |
+
],
|
| 259 |
+
"tokenizer_bos_token": [
|
| 260 |
+
"<|startoftext|>",
|
| 261 |
+
"1"
|
| 262 |
+
],
|
| 263 |
+
"eot_token_id": 2,
|
| 264 |
+
"max_length": 2047,
|
| 265 |
+
"task_hashes": {},
|
| 266 |
+
"model_source": "local-completions",
|
| 267 |
+
"model_name": "ai21labs/AI21-Jamba-1.5-Mini",
|
| 268 |
+
"model_name_sanitized": "ai21labs__AI21-Jamba-1.5-Mini",
|
| 269 |
+
"system_instruction": null,
|
| 270 |
+
"system_instruction_sha": null,
|
| 271 |
+
"fewshot_as_multiturn": false,
|
| 272 |
+
"chat_template": null,
|
| 273 |
+
"chat_template_sha": null,
|
| 274 |
+
"start_time": 863707.437211111,
|
| 275 |
+
"end_time": 864572.119983278,
|
| 276 |
+
"total_evaluation_time_seconds": "864.682772167027"
|
| 277 |
+
}
|