Create matcher.py
Browse files- evaluation_data/carb/matcher.py +339 -0
evaluation_data/carb/matcher.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
import string
|
| 3 |
+
from nltk.translate.bleu_score import sentence_bleu
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
from copy import copy
|
| 6 |
+
import ipdb
|
| 7 |
+
|
| 8 |
+
class Matcher:
|
| 9 |
+
@staticmethod
|
| 10 |
+
def bowMatch(ref, ex, ignoreStopwords, ignoreCase):
|
| 11 |
+
"""
|
| 12 |
+
A binary function testing for exact lexical match (ignoring ordering) between reference
|
| 13 |
+
and predicted extraction
|
| 14 |
+
"""
|
| 15 |
+
s1 = ref.bow()
|
| 16 |
+
s2 = ex.bow()
|
| 17 |
+
if ignoreCase:
|
| 18 |
+
s1 = s1.lower()
|
| 19 |
+
s2 = s2.lower()
|
| 20 |
+
|
| 21 |
+
s1Words = s1.split(' ')
|
| 22 |
+
s2Words = s2.split(' ')
|
| 23 |
+
|
| 24 |
+
if ignoreStopwords:
|
| 25 |
+
s1Words = Matcher.removeStopwords(s1Words)
|
| 26 |
+
s2Words = Matcher.removeStopwords(s2Words)
|
| 27 |
+
|
| 28 |
+
return sorted(s1Words) == sorted(s2Words)
|
| 29 |
+
|
| 30 |
+
@staticmethod
|
| 31 |
+
def predMatch(ref, ex, ignoreStopwords, ignoreCase):
|
| 32 |
+
"""
|
| 33 |
+
Return whehter gold and predicted extractions agree on the predicate
|
| 34 |
+
"""
|
| 35 |
+
s1 = ref.elementToStr(ref.pred)
|
| 36 |
+
s2 = ex.elementToStr(ex.pred)
|
| 37 |
+
if ignoreCase:
|
| 38 |
+
s1 = s1.lower()
|
| 39 |
+
s2 = s2.lower()
|
| 40 |
+
|
| 41 |
+
s1Words = s1.split(' ')
|
| 42 |
+
s2Words = s2.split(' ')
|
| 43 |
+
|
| 44 |
+
if ignoreStopwords:
|
| 45 |
+
s1Words = Matcher.removeStopwords(s1Words)
|
| 46 |
+
s2Words = Matcher.removeStopwords(s2Words)
|
| 47 |
+
|
| 48 |
+
return s1Words == s2Words
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@staticmethod
|
| 52 |
+
def argMatch(ref, ex, ignoreStopwords, ignoreCase):
|
| 53 |
+
"""
|
| 54 |
+
Return whehter gold and predicted extractions agree on the arguments
|
| 55 |
+
"""
|
| 56 |
+
sRef = ' '.join([ref.elementToStr(elem) for elem in ref.args])
|
| 57 |
+
sEx = ' '.join([ex.elementToStr(elem) for elem in ex.args])
|
| 58 |
+
|
| 59 |
+
count = 0
|
| 60 |
+
|
| 61 |
+
for w1 in sRef:
|
| 62 |
+
for w2 in sEx:
|
| 63 |
+
if w1 == w2:
|
| 64 |
+
count += 1
|
| 65 |
+
|
| 66 |
+
# We check how well does the extraction lexically cover the reference
|
| 67 |
+
# Note: this is somewhat lenient as it doesn't penalize the extraction for
|
| 68 |
+
# being too long
|
| 69 |
+
coverage = float(count) / len(sRef)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
return coverage > Matcher.LEXICAL_THRESHOLD
|
| 73 |
+
|
| 74 |
+
@staticmethod
|
| 75 |
+
def bleuMatch(ref, ex, ignoreStopwords, ignoreCase):
|
| 76 |
+
sRef = ref.bow()
|
| 77 |
+
sEx = ex.bow()
|
| 78 |
+
bleu = sentence_bleu(references = [sRef.split(' ')], hypothesis = sEx.split(' '))
|
| 79 |
+
return bleu > Matcher.BLEU_THRESHOLD
|
| 80 |
+
|
| 81 |
+
@staticmethod
|
| 82 |
+
def lexicalMatch(ref, ex, ignoreStopwords, ignoreCase):
|
| 83 |
+
sRef = ref.bow().split(' ')
|
| 84 |
+
sEx = ex.bow().split(' ')
|
| 85 |
+
count = 0
|
| 86 |
+
#for w1 in sRef:
|
| 87 |
+
# if w1 in sEx:
|
| 88 |
+
# count += 1
|
| 89 |
+
# sEx.remove(w1)
|
| 90 |
+
for w1 in sRef:
|
| 91 |
+
for w2 in sEx:
|
| 92 |
+
if w1 == w2:
|
| 93 |
+
count += 1
|
| 94 |
+
|
| 95 |
+
# We check how well does the extraction lexically cover the reference
|
| 96 |
+
# Note: this is somewhat lenient as it doesn't penalize the extraction for
|
| 97 |
+
# being too long
|
| 98 |
+
coverage = float(count) / len(sRef)
|
| 99 |
+
|
| 100 |
+
return coverage > Matcher.LEXICAL_THRESHOLD
|
| 101 |
+
|
| 102 |
+
@staticmethod
|
| 103 |
+
def tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 104 |
+
precision = [0, 0] # 0 out of 0 predicted words match
|
| 105 |
+
recall = [0, 0] # 0 out of 0 reference words match
|
| 106 |
+
# If, for each part, any word is the same as a reference word, then it's a match.
|
| 107 |
+
|
| 108 |
+
predicted_words = ex.pred.split()
|
| 109 |
+
gold_words = ref.pred.split()
|
| 110 |
+
precision[1] += len(predicted_words)
|
| 111 |
+
recall[1] += len(gold_words)
|
| 112 |
+
|
| 113 |
+
# matching_words = sum(1 for w in predicted_words if w in gold_words)
|
| 114 |
+
matching_words = 0
|
| 115 |
+
for w in gold_words:
|
| 116 |
+
if w in predicted_words:
|
| 117 |
+
matching_words += 1
|
| 118 |
+
predicted_words.remove(w)
|
| 119 |
+
|
| 120 |
+
if matching_words == 0:
|
| 121 |
+
return False # t <-> gt is not a match
|
| 122 |
+
precision[0] += matching_words
|
| 123 |
+
recall[0] += matching_words
|
| 124 |
+
|
| 125 |
+
for i in range(len(ref.args)):
|
| 126 |
+
gold_words = ref.args[i].split()
|
| 127 |
+
recall[1] += len(gold_words)
|
| 128 |
+
if len(ex.args) <= i:
|
| 129 |
+
if i<2:
|
| 130 |
+
return False
|
| 131 |
+
else:
|
| 132 |
+
continue
|
| 133 |
+
predicted_words = ex.args[i].split()
|
| 134 |
+
precision[1] += len(predicted_words)
|
| 135 |
+
matching_words = 0
|
| 136 |
+
for w in gold_words:
|
| 137 |
+
if w in predicted_words:
|
| 138 |
+
matching_words += 1
|
| 139 |
+
predicted_words.remove(w)
|
| 140 |
+
|
| 141 |
+
if matching_words == 0 and i<2:
|
| 142 |
+
return False # t <-> gt is not a match
|
| 143 |
+
precision[0] += matching_words
|
| 144 |
+
# Currently this slightly penalises systems when the reference
|
| 145 |
+
# reformulates the sentence words, because the reformulation doesn't
|
| 146 |
+
# match the predicted word. It's a one-wrong-word penalty to precision,
|
| 147 |
+
# to all systems that correctly extracted the reformulated word.
|
| 148 |
+
recall[0] += matching_words
|
| 149 |
+
|
| 150 |
+
prec = 1.0 * precision[0] / precision[1]
|
| 151 |
+
rec = 1.0 * recall[0] / recall[1]
|
| 152 |
+
return [prec, rec]
|
| 153 |
+
|
| 154 |
+
# STRICTER LINIENT MATCH
|
| 155 |
+
def linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 156 |
+
precision = [0, 0] # 0 out of 0 predicted words match
|
| 157 |
+
recall = [0, 0] # 0 out of 0 reference words match
|
| 158 |
+
# If, for each part, any word is the same as a reference word, then it's a match.
|
| 159 |
+
|
| 160 |
+
predicted_words = ex.pred.split()
|
| 161 |
+
gold_words = ref.pred.split()
|
| 162 |
+
precision[1] += len(predicted_words)
|
| 163 |
+
recall[1] += len(gold_words)
|
| 164 |
+
|
| 165 |
+
# matching_words = sum(1 for w in predicted_words if w in gold_words)
|
| 166 |
+
matching_words = 0
|
| 167 |
+
for w in gold_words:
|
| 168 |
+
if w in predicted_words:
|
| 169 |
+
matching_words += 1
|
| 170 |
+
predicted_words.remove(w)
|
| 171 |
+
|
| 172 |
+
# matching 'be' with its different forms
|
| 173 |
+
forms_of_be = ["be","is","am","are","was","were","been","being"]
|
| 174 |
+
if "be" in predicted_words:
|
| 175 |
+
for form in forms_of_be:
|
| 176 |
+
if form in gold_words:
|
| 177 |
+
matching_words += 1
|
| 178 |
+
predicted_words.remove("be")
|
| 179 |
+
break
|
| 180 |
+
|
| 181 |
+
if matching_words == 0:
|
| 182 |
+
return [0,0] # t <-> gt is not a match
|
| 183 |
+
|
| 184 |
+
precision[0] += matching_words
|
| 185 |
+
recall[0] += matching_words
|
| 186 |
+
|
| 187 |
+
for i in range(len(ref.args)):
|
| 188 |
+
gold_words = ref.args[i].split()
|
| 189 |
+
recall[1] += len(gold_words)
|
| 190 |
+
if len(ex.args) <= i:
|
| 191 |
+
if i<2:
|
| 192 |
+
return [0,0] # changed
|
| 193 |
+
else:
|
| 194 |
+
continue
|
| 195 |
+
predicted_words = ex.args[i].split()
|
| 196 |
+
precision[1] += len(predicted_words)
|
| 197 |
+
matching_words = 0
|
| 198 |
+
for w in gold_words:
|
| 199 |
+
if w in predicted_words:
|
| 200 |
+
matching_words += 1
|
| 201 |
+
predicted_words.remove(w)
|
| 202 |
+
|
| 203 |
+
precision[0] += matching_words
|
| 204 |
+
# Currently this slightly penalises systems when the reference
|
| 205 |
+
# reformulates the sentence words, because the reformulation doesn't
|
| 206 |
+
# match the predicted word. It's a one-wrong-word penalty to precision,
|
| 207 |
+
# to all systems that correctly extracted the reformulated word.
|
| 208 |
+
recall[0] += matching_words
|
| 209 |
+
|
| 210 |
+
if(precision[1] == 0):
|
| 211 |
+
prec = 0
|
| 212 |
+
else:
|
| 213 |
+
prec = 1.0 * precision[0] / precision[1]
|
| 214 |
+
if(recall[1] == 0):
|
| 215 |
+
rec = 0
|
| 216 |
+
else:
|
| 217 |
+
rec = 1.0 * recall[0] / recall[1]
|
| 218 |
+
return [prec, rec]
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@staticmethod
|
| 222 |
+
def simple_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 223 |
+
ref.args = [ref.args[0], ' '.join(ref.args[1:])]
|
| 224 |
+
ex.args = [ex.args[0], ' '.join(ex.args[1:])]
|
| 225 |
+
|
| 226 |
+
precision = [0, 0] # 0 out of 0 predicted words match
|
| 227 |
+
recall = [0, 0] # 0 out of 0 reference words match
|
| 228 |
+
# If, for each part, any word is the same as a reference word, then it's a match.
|
| 229 |
+
|
| 230 |
+
predicted_words = ex.pred.split()
|
| 231 |
+
gold_words = ref.pred.split()
|
| 232 |
+
precision[1] += len(predicted_words)
|
| 233 |
+
recall[1] += len(gold_words)
|
| 234 |
+
|
| 235 |
+
matching_words = 0
|
| 236 |
+
for w in gold_words:
|
| 237 |
+
if w in predicted_words:
|
| 238 |
+
matching_words += 1
|
| 239 |
+
predicted_words.remove(w)
|
| 240 |
+
|
| 241 |
+
precision[0] += matching_words
|
| 242 |
+
recall[0] += matching_words
|
| 243 |
+
|
| 244 |
+
for i in range(len(ref.args)):
|
| 245 |
+
gold_words = ref.args[i].split()
|
| 246 |
+
recall[1] += len(gold_words)
|
| 247 |
+
if len(ex.args) <= i:
|
| 248 |
+
break
|
| 249 |
+
predicted_words = ex.args[i].split()
|
| 250 |
+
precision[1] += len(predicted_words)
|
| 251 |
+
matching_words = 0
|
| 252 |
+
for w in gold_words:
|
| 253 |
+
if w in predicted_words:
|
| 254 |
+
matching_words += 1
|
| 255 |
+
predicted_words.remove(w)
|
| 256 |
+
precision[0] += matching_words
|
| 257 |
+
|
| 258 |
+
# Currently this slightly penalises systems when the reference
|
| 259 |
+
# reformulates the sentence words, because the reformulation doesn't
|
| 260 |
+
# match the predicted word. It's a one-wrong-word penalty to precision,
|
| 261 |
+
# to all systems that correctly extracted the reformulated word.
|
| 262 |
+
recall[0] += matching_words
|
| 263 |
+
|
| 264 |
+
prec = 1.0 * precision[0] / precision[1]
|
| 265 |
+
rec = 1.0 * recall[0] / recall[1]
|
| 266 |
+
return [prec, rec]
|
| 267 |
+
|
| 268 |
+
# @staticmethod
|
| 269 |
+
# def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 270 |
+
# if len(ref.args)>=2:
|
| 271 |
+
# # r = ref.copy()
|
| 272 |
+
# r = copy(ref)
|
| 273 |
+
# r.args = [ref.args[0], ' '.join(ref.args[1:])]
|
| 274 |
+
# else:
|
| 275 |
+
# r = ref
|
| 276 |
+
# if len(ex.args)>=2:
|
| 277 |
+
# # e = ex.copy()
|
| 278 |
+
# e = copy(ex)
|
| 279 |
+
# e.args = [ex.args[0], ' '.join(ex.args[1:])]
|
| 280 |
+
# else:
|
| 281 |
+
# e = ex
|
| 282 |
+
# return Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
|
| 283 |
+
|
| 284 |
+
@staticmethod
|
| 285 |
+
def binary_linient_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 286 |
+
if len(ref.args)>=2:
|
| 287 |
+
r = copy(ref)
|
| 288 |
+
r.args = [ref.args[0], ' '.join(ref.args[1:])]
|
| 289 |
+
else:
|
| 290 |
+
r = ref
|
| 291 |
+
if len(ex.args)>=2:
|
| 292 |
+
e = copy(ex)
|
| 293 |
+
e.args = [ex.args[0], ' '.join(ex.args[1:])]
|
| 294 |
+
else:
|
| 295 |
+
e = ex
|
| 296 |
+
stright_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
|
| 297 |
+
|
| 298 |
+
said_type_reln = ["said", "told", "added", "adds", "says", "adds"]
|
| 299 |
+
said_type_sentence = False
|
| 300 |
+
for said_verb in said_type_reln:
|
| 301 |
+
if said_verb in ref.pred:
|
| 302 |
+
said_type_sentence = True
|
| 303 |
+
break
|
| 304 |
+
if not said_type_sentence:
|
| 305 |
+
return stright_match
|
| 306 |
+
else:
|
| 307 |
+
if len(ex.args)>=2:
|
| 308 |
+
e = copy(ex)
|
| 309 |
+
e.args = [' '.join(ex.args[1:]), ex.args[0]]
|
| 310 |
+
else:
|
| 311 |
+
e = ex
|
| 312 |
+
reverse_match = Matcher.linient_tuple_match(r, e, ignoreStopwords, ignoreCase)
|
| 313 |
+
|
| 314 |
+
return max(stright_match, reverse_match)
|
| 315 |
+
|
| 316 |
+
@staticmethod
|
| 317 |
+
def binary_tuple_match(ref, ex, ignoreStopwords, ignoreCase):
|
| 318 |
+
if len(ref.args)>=2:
|
| 319 |
+
# r = ref.copy()
|
| 320 |
+
r = copy(ref)
|
| 321 |
+
r.args = [ref.args[0], ' '.join(ref.args[1:])]
|
| 322 |
+
else:
|
| 323 |
+
r = ref
|
| 324 |
+
if len(ex.args)>=2:
|
| 325 |
+
# e = ex.copy()
|
| 326 |
+
e = copy(ex)
|
| 327 |
+
e.args = [ex.args[0], ' '.join(ex.args[1:])]
|
| 328 |
+
else:
|
| 329 |
+
e = ex
|
| 330 |
+
return Matcher.tuple_match(r, e, ignoreStopwords, ignoreCase)
|
| 331 |
+
|
| 332 |
+
@staticmethod
|
| 333 |
+
def removeStopwords(ls):
|
| 334 |
+
return [w for w in ls if w.lower() not in Matcher.stopwords]
|
| 335 |
+
|
| 336 |
+
# CONSTANTS
|
| 337 |
+
BLEU_THRESHOLD = 0.4
|
| 338 |
+
LEXICAL_THRESHOLD = 0.5 # Note: changing this value didn't change the ordering of the tested systems
|
| 339 |
+
stopwords = stopwords.words('english') + list(string.punctuation)
|