File size: 24,251 Bytes
60e52a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import os.path as osp
import json
from typing import List, Union
import random
import yaml
from einops import rearrange, reduce
import torch
import torchvision.transforms.functional as tv_functional
import gzip
import numpy as np
import cv2
from PIL import Image
from torchvision.transforms.functional import pil_to_tensor
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
# hexs = ('FF1010', '10FF10', 'FFF010', '100FFF', 'c0c0c0', 'FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
# '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
hexs = [
'#4363d8',
'#9A6324',
'#808000',
'#469990',
'#000075',
'#e6194B',
'#f58231',
'#ffe119',
'#bfef45',
'#3cb44b',
'#42d4f4',
'#800000',
'#911eb4',
'#f032e6',
'#fabed4',
'#ffd8b1',
'#fffac8',
'#aaffc3',
'#dcbeff',
'#a9a9a9',
'#006400',
'#4169E1',
'#8B4513',
'#FA8072',
'#87CEEB',
'#FFD700',
'#ffffff',
'#000000',
]
self.palette = [self.hex2rgb(f'#{c}') if not c.startswith('#') else self.hex2rgb(c) for c in hexs]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
DEFAULT_COLOR_PALETTE = Colors()
def get_color(idx):
if idx == -1:
return 255
else:
return DEFAULT_COLOR_PALETTE(idx)
VALID_BODY_PARTS_V2 = [
'hair', 'headwear', 'face', 'eyes', 'eyewear', 'ears', 'earwear', 'nose', 'mouth',
'neck', 'neckwear', 'topwear', 'handwear', 'bottomwear', 'legwear', 'footwear',
'tail', 'wings', 'objects'
]
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_image(imgp: str, mode="RGB", output_type='numpy'):
"""
return RGB image as output_type
"""
img = Image.open(imgp).convert(mode)
if output_type == 'numpy':
img = np.array(img)
if len(img.shape) == 2:
img = img[..., None]
return img
def bbox_intersection(xyxy, xyxy2):
x1, y1, x2, y2 = xyxy2
dx1, dy1, dx2, dy2 = xyxy
ix1, ix2 = max(x1, dx1), min(x2, dx2)
iy1, iy2 = max(y1, dy1), min(y2, dy2)
if ix2 >= ix1 and iy2 >= iy1:
return [ix1, iy1, ix2, iy2]
return None
_IMG2TENSOR_IMGTYPE = (Image.Image, np.ndarray, str)
_IMG2TENSOR_DIMORDER = ('bchw', 'chw', 'hwc')
def img2tensor(img: Union[Image.Image, np.ndarray, str, torch.Tensor], normalize = False, mean = 0., std = 255., dim_order: str = 'bchw', dtype=torch.float32, device: str = 'cpu', imread_mode='RGB'):
def _check_normalize_values(values, num_channels):
if isinstance(values, tuple):
values = list(values)
elif isinstance(values, (int, float, np.ScalarType)):
values = [values] * num_channels
else:
assert isinstance(values, (np.ndarray, list))
if len(values) > num_channels:
values = values[:num_channels]
assert len(values) == num_channels
return values
assert isinstance(img, _IMG2TENSOR_IMGTYPE)
assert dim_order in _IMG2TENSOR_DIMORDER
if isinstance(img, str):
img = load_image(img, mode=imread_mode)
if isinstance(img, Image.Image):
img = pil_to_tensor(img)
if dim_order == 'bchw':
img = img.unsqueeze(0)
elif dim_order == 'hwc':
img = img.permute((1, 2, 0))
else:
if img.ndim == 2:
img = img[..., None]
else:
assert img.ndim == 3
if dim_order == 'bchw':
img = rearrange(img, 'h w c -> c h w')[None, ...]
elif dim_order == 'chw':
img = rearrange(img, 'h w c -> c h w')
img = torch.from_numpy(np.ascontiguousarray(img))
img = img.to(device=device, dtype=dtype)
if normalize:
if dim_order == 'bchw':
c = img.shape[1]
elif dim_order == 'chw':
c = img.shape[0]
else:
c = img.shape[2]
if mean is not None and std is not None:
mean = _check_normalize_values(mean, c)
std = _check_normalize_values(std, c)
img = tv_functional.normalize(img, mean=mean, std=std)
return img
def optim_depth(part_dict_list, fullpage):
window = create_window(11, 1.5, 3)
depth_map = np.full(fullpage.shape[:2], 2, dtype=np.float32)
ssim_map = np.full(fullpage.shape[:2], 0., dtype=np.float32)
depth_order_map = np.full(fullpage.shape[:2], -1, dtype=np.int16)
color_order_map = depth_order_map.copy()
fullpage_torch = img2tensor(fullpage[..., :3])
for ii, pd in enumerate(part_dict_list):
x1, y1, x2, y2 = pd['xyxy']
xyxy = pd['xyxy']
mask = pd['mask']
region_torch = img2tensor(pd['img'][..., :3])
with torch.no_grad():
ssim_map_region = calculate_ssim_map(fullpage_torch[:, :, y1: y2, x1: x2], region_torch, window, 255, use_padding=True)
ssim_map_region = ssim_map_region.to(dtype=torch.float32, device='cpu')[0].numpy()
ssim_update_mask = np.bitwise_and(ssim_map_region > ssim_map[y1: y2, x1: x2], mask)
if np.any(ssim_update_mask):
upd_mask = ssim_update_mask.astype(np.int32)
color_order_map[y1: y2, x1: x2] = color_order_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16)
ssim_map[y1: y2, x1: x2] = ssim_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * ssim_map_region
depth_update_mask = np.bitwise_and(pd['depth'] < depth_map[y1: y2, x1: x2], mask)
if np.any(depth_update_mask):
depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * pd['depth']
depth_order_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_order_map[y1: y2, x1: x2] + depth_update_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16)
for _ in range(1):
for ii in range(len(part_dict_list)):
pd = part_dict_list[ii]
# if pd['tag'] in {'face', 'topwear', 'nose'}:
# continue
x1, y1, x2, y2 = pd['xyxy']
mask = pd['mask']
color_mask = color_order_map[y1: y2, x1: x2] == ii
if not np.any(color_mask):
continue
depth = pd['depth']
depth_region = depth_map[y1: y2, x1: x2]
max_shift = np.max((depth - depth_region) * color_mask * mask)
if max_shift == 0:
continue
max_shift += 0.001
min_shift = np.min((depth - depth_region) * mask)
# print(min_shift)
shift_list = np.linspace(0., max_shift, num=20)
# shift_list = np.concat([np.linspace(0, min_shift, num=20), shift_list])
score_map = depth[..., None] - shift_list[None, None] < depth_region[..., None]
score_map = reduce((score_map == color_mask[..., None]).astype(np.float32) * mask[..., None], 'h w c -> c', reduction='mean')
shift = shift_list[np.argmax(score_map)]
if shift > 0:
depth -= shift
depth_update_mask = np.bitwise_and(depth < depth_region, mask)
depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * depth
pd['depth'] = depth
def load_parts(srcp, rotate=False):
srcimg = osp.join(srcp, 'src_img.png')
fullpage = np.array(Image.open(srcimg).convert('RGBA'))
infop = osp.join(srcp, 'info.json')
infos = json2dict(infop)
part_dict_list = []
tag2pd = {}
part_id = 0
min_sz = 12
if rotate:
fullpage = np.rot90(fullpage, 3, )
for tag, partdict in infos['parts'].items():
img = Image.open(osp.join(srcp, tag + '.png')).convert('RGBA')
depthp = osp.join(srcp, tag + '_depth.png')
img = np.array(img)
p_test = max(img.shape[:2]) // 10
mask = img[..., -1] > 10
if np.sum(mask[:-p_test, :-p_test]) > 4:
if rotate:
img = np.rot90(img, 3)
mask = np.rot90(mask, 3, )
xyxy = cv2.boundingRect(cv2.findNonZero(mask.astype(np.uint8)))
xyxy = np.array(xyxy)
h, w = xyxy[2:]
xyxy[2] += xyxy[0]
xyxy[3] += xyxy[1]
p = min_sz - w
if p > 0:
if xyxy[0] >= p:
xyxy[0] -= p
else:
xyxy[2] += p
p = min_sz - h
if p > 0:
if xyxy[1] >= p:
xyxy[1] -= p
else:
xyxy[3] += p
x1, y1, x2, y2 = xyxy
depth = np.array(Image.open(depthp).convert('L'))
if rotate:
depth = np.rot90(depth, 3)
dmin, dmax = partdict['depth_min'], partdict['depth_max']
mask = mask[y1: y2, x1: x2].copy()
img = img[y1: y2, x1: x2].copy()
depth = depth[y1: y2, x1: x2].copy()
depth = np.array(depth, dtype=np.float32) / 255 * (dmax - dmin) + dmin
tag2pd[tag] = {'img': img, 'depth': depth, 'part_id': part_id, 'xyxy': xyxy, 'mask': mask, 'tag': tag}
part_dict_list.append(tag2pd[tag])
part_id += 1
return fullpage, infos, part_dict_list
def json2dict(json_path: str):
plower = json_path.lower()
if plower.endswith('.gz'):
with gzip.open(json_path, 'rt', encoding='utf8') as f:
metadata = json.load(f)
return metadata
if plower.endswith('.yaml'):
with open(json_path, 'r') as file:
metadata = yaml.load(file, yaml.CSafeLoader)
return metadata
with open(json_path, 'r', encoding='utf8') as f:
metadata = json.loads(f.read())
return metadata
# Source: https://github.com/One-sixth/ms_ssim_pytorch/blob/master/ssim.py
'''
code modified from
https://github.com/VainF/pytorch-msssim/blob/master/pytorch_msssim/ssim.py
'''
import torch
import torch.jit
import torch.nn.functional as F
@torch.jit.script
def create_window(window_size: int = 11, sigma: float = 1.5, channel: int = 3):
'''
Create 1-D gauss kernel
:param window_size: the size of gauss kernel
:param sigma: sigma of normal distribution
:param channel: input channel
:return: 1D kernel
'''
coords = torch.arange(window_size, dtype=torch.float)
coords -= window_size // 2
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
g /= g.sum()
g = g.reshape(1, 1, 1, -1).repeat(channel, 1, 1, 1)
return g
@torch.jit.script
def _gaussian_filter(x, window_1d, use_padding: bool):
'''
Blur input with 1-D kernel
:param x: batch of tensors to be blured
:param window_1d: 1-D gauss kernel
:param use_padding: padding image before conv
:return: blured tensors
'''
C = x.shape[1]
padding = 0
if use_padding:
window_size = window_1d.shape[3]
padding = window_size // 2
out = F.conv2d(x, window_1d, stride=1, padding=(0, padding), groups=C)
out = F.conv2d(out, window_1d.transpose(2, 3), stride=1, padding=(padding, 0), groups=C)
return out
@torch.jit.script
def calculate_ssim_map(X, Y, window, data_range: float, use_padding: bool=True):
'''
Calculate ssim index for X and Y
:param X: images
:param Y: images
:param window: 1-D gauss kernel
:param data_range: value range of input images. (usually 1.0 or 255)
:param use_padding: padding image before conv
:return:
'''
K1 = 0.01
K2 = 0.03
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
mu1 = _gaussian_filter(X, window, use_padding)
mu2 = _gaussian_filter(Y, window, use_padding)
sigma1_sq = _gaussian_filter(X * X, window, use_padding)
sigma2_sq = _gaussian_filter(Y * Y, window, use_padding)
sigma12 = _gaussian_filter(X * Y, window, use_padding)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (sigma1_sq - mu1_sq)
sigma2_sq = compensation * (sigma2_sq - mu2_sq)
sigma12 = compensation * (sigma12 - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
# Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan.
cs_map = F.relu(cs_map)
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_val = ssim_map.mean(dim=(1)) # reduce along CHW
return ssim_val
@torch.jit.script
def ssim(X, Y, window, data_range: float, use_padding: bool=False):
'''
Calculate ssim index for X and Y
:param X: images
:param Y: images
:param window: 1-D gauss kernel
:param data_range: value range of input images. (usually 1.0 or 255)
:param use_padding: padding image before conv
:return:
'''
K1 = 0.01
K2 = 0.03
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
mu1 = _gaussian_filter(X, window, use_padding)
mu2 = _gaussian_filter(Y, window, use_padding)
sigma1_sq = _gaussian_filter(X * X, window, use_padding)
sigma2_sq = _gaussian_filter(Y * Y, window, use_padding)
sigma12 = _gaussian_filter(X * Y, window, use_padding)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (sigma1_sq - mu1_sq)
sigma2_sq = compensation * (sigma2_sq - mu2_sq)
sigma12 = compensation * (sigma12 - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
# Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan.
cs_map = F.relu(cs_map)
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_val = ssim_map.mean(dim=(1, 2, 3)) # reduce along CHW
cs = cs_map.mean(dim=(1, 2, 3))
return ssim_val, cs
@torch.jit.script
def ms_ssim(X, Y, window, data_range: float, weights, use_padding: bool=False, eps: float=1e-8):
'''
interface of ms-ssim
:param X: a batch of images, (N,C,H,W)
:param Y: a batch of images, (N,C,H,W)
:param window: 1-D gauss kernel
:param data_range: value range of input images. (usually 1.0 or 255)
:param weights: weights for different levels
:param use_padding: padding image before conv
:param eps: use for avoid grad nan.
:return:
'''
weights = weights[:, None]
levels = weights.shape[0]
vals = []
for i in range(levels):
ss, cs = ssim(X, Y, window=window, data_range=data_range, use_padding=use_padding)
if i < levels-1:
vals.append(cs)
X = F.avg_pool2d(X, kernel_size=2, stride=2, ceil_mode=True)
Y = F.avg_pool2d(Y, kernel_size=2, stride=2, ceil_mode=True)
else:
vals.append(ss)
vals = torch.stack(vals, dim=0)
# Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
vals = vals.clamp_min(eps)
# The origin ms-ssim op.
ms_ssim_val = torch.prod(vals[:-1] ** weights[:-1] * vals[-1:] ** weights[-1:], dim=0)
# The new ms-ssim op. But I don't know which is best.
# ms_ssim_val = torch.prod(vals ** weights, dim=0)
# In this file's image training demo. I feel the old ms-ssim more better. So I keep use old ms-ssim op.
return ms_ssim_val
class SSIMCriteria(torch.jit.ScriptModule):
__constants__ = ['data_range', 'use_padding']
def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False):
'''
:param window_size: the size of gauss kernel
:param window_sigma: sigma of normal distribution
:param data_range: value range of input images. (usually 1.0 or 255)
:param channel: input channels (default: 3)
:param use_padding: padding image before conv
'''
super().__init__()
assert window_size % 2 == 1, 'Window size must be odd.'
window = create_window(window_size, window_sigma, channel)
self.register_buffer('window', window)
self.data_range = data_range
self.use_padding = use_padding
@torch.jit.script_method
def forward(self, X, Y):
r = ssim(X, Y, window=self.window, data_range=self.data_range, use_padding=self.use_padding)
return r[0]
class MS_SSIM(torch.jit.ScriptModule):
__constants__ = ['data_range', 'use_padding', 'eps']
def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False, weights=None, levels=None, eps=1e-8):
'''
class for ms-ssim
:param window_size: the size of gauss kernel
:param window_sigma: sigma of normal distribution
:param data_range: value range of input images. (usually 1.0 or 255)
:param channel: input channels
:param use_padding: padding image before conv
:param weights: weights for different levels. (default [0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
:param levels: number of downsampling
:param eps: Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
'''
super().__init__()
assert window_size % 2 == 1, 'Window size must be odd.'
self.data_range = data_range
self.use_padding = use_padding
self.eps = eps
window = create_window(window_size, window_sigma, channel)
self.register_buffer('window', window)
if weights is None:
weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
weights = torch.tensor(weights, dtype=torch.float)
if levels is not None:
weights = weights[:levels]
weights = weights / weights.sum()
self.register_buffer('weights', weights)
@torch.jit.script_method
def forward(self, X, Y):
return ms_ssim(X, Y, window=self.window, data_range=self.data_range, weights=self.weights,
use_padding=self.use_padding, eps=self.eps)
def img_alpha_blending(
drawables: List[np.ndarray],
xyxy=None,
output_type='numpy',
final_size=None,
max_depth_val=255,
premultiplied=True,
):
'''
final_size: (h, w)
'''
if isinstance(drawables, (np.ndarray, dict)):
drawables = [drawables]
# infer final scene size
if xyxy is not None:
final_size = [xyxy[3] - xyxy[1], xyxy[2] - xyxy[0]]
x1, y1, x2, y2 = xyxy
elif final_size is None:
d = drawables[0]
if isinstance(d, dict):
d = d['img']
final_size = d.shape[:2]
final_rgb = np.zeros((final_size[0], final_size[1], 3), dtype=np.float32)
final_alpha = np.zeros_like(final_rgb[..., [0]])
final_depth = None
for drawable_img in drawables:
dxyxy = None
depth = None
if isinstance(drawable_img, dict):
depth = drawable_img.get('depth', None)
tag = drawable_img.get('tag', None)
if depth is not None:
if depth.ndim == 2:
depth = depth[..., None]
if final_depth is None:
final_depth = np.full_like(final_alpha, fill_value=max_depth_val)
if 'xyxy' in drawable_img:
dxyxy = drawable_img['xyxy']
dx1, dy1, dx2, dy2 = dxyxy
drawable_img = drawable_img['img']
if dxyxy is not None:
if dx1 < 0:
drawable_img = drawable_img[:, -dx1:]
if depth is not None:
depth = depth[:, -dx1:]
dx1 = 0
if dy1 < 0:
drawable_img = drawable_img[-dy1:]
if depth is not None:
depth = depth[-dy1:]
dy1 = 0
if drawable_img.ndim == 3 and drawable_img.shape[-1] == 3:
drawable_alpha = np.ones_like(drawable_img[..., [-1]])
else:
drawable_alpha = drawable_img[..., [-1]] / 255
drawable_img = drawable_img[..., :3]
if xyxy is not None:
if dxyxy is None:
drawable_img = drawable_img[y1: y2, x1: x2]
else:
intersection = bbox_intersection(xyxy, dxyxy)
if intersection is None:
continue
ix1, iy1, ix2, iy2 = intersection
drawable_alpha = drawable_alpha[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1]
final_alpha[iy1-y1: iy2-y1, ix1-x1: ix2-x1] += drawable_alpha
drawable_img = drawable_img[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1]
final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] = final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] * (1-drawable_alpha) + drawable_img
continue
if dxyxy is None:
if depth is not None:
update_mask = (final_depth > depth).astype(np.uint8)
final_depth = update_mask * depth + (1-update_mask) * final_depth
final_rgb = update_mask * (final_rgb * (1-drawable_alpha) + drawable_img) + \
(1 - update_mask) * (drawable_img * (1-final_alpha) + final_rgb)
final_alpha = np.clip(final_alpha + drawable_alpha, 0, 1)
else:
final_alpha += drawable_alpha
final_alpha = np.clip(final_alpha, 0, 1)
if not premultiplied:
drawable_img = drawable_img * drawable_alpha
final_rgb = final_rgb * (1 - drawable_alpha) + drawable_img
else:
if depth is not None:
update_mask = (final_depth[dy1: dy2, dx1: dx2] > depth).astype(np.uint8)
update_mask = update_mask * (drawable_alpha > 0.1)
final_depth[dy1: dy2, dx1: dx2] = update_mask * depth + (1-update_mask) * final_depth[dy1: dy2, dx1: dx2]
final_rgb[dy1: dy2, dx1: dx2] = update_mask * (final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img) + \
(1 - update_mask) * (drawable_img * (1-final_alpha[dy1: dy2, dx1: dx2]) + final_rgb[dy1: dy2, dx1: dx2])
final_alpha[dy1: dy2, dx1: dx2] = np.clip(final_alpha[dy1: dy2, dx1: dx2] + drawable_alpha, 0, 1)
else:
final_alpha[dy1: dy2, dx1: dx2] += drawable_alpha
final_alpha = np.clip(final_alpha, 0, 1)
final_rgb[dy1: dy2, dx1: dx2] = final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img
final_alpha = np.clip(final_alpha, 0, 1) * 255
final = np.concatenate([final_rgb, final_alpha], axis=2)
final = np.clip(final, 0, 255).astype(np.uint8)
output_type = output_type.lower()
if output_type == 'pil':
final = Image.fromarray(final)
elif output_type == 'dict':
final = {
'img': final
}
if final_depth is not None:
final['depth'] = final_depth
return final
def rgba_to_rgb_fixbg(img: np.ndarray, background_color=255):
if isinstance(img, Image.Image):
img = np.array(img)
assert img.ndim == 3
if img.shape[-1] == 3:
return img
if isinstance(background_color, int):
bg = np.full_like(img[..., :3], fill_value=background_color)
else:
background_color = np.array(background_color)[:3].astype(np.uint8)
bg = np.full_like(img[..., :3], fill_value=255)
bg[..., :3] = background_color
return img_alpha_blending([bg, img])[..., :3].copy()
|