import os.path as osp import os import argparse import numpy as np import numpy as np import cv2 import matplotlib.pyplot as plt from matplotlib.lines import Line2D from PIL import Image import matplotlib.pyplot as plt from vis_utils import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--saved', type=str, default=None) parser.add_argument('--srcp', type=str) args = parser.parse_args() srcp = args.srcp saved = args.saved if saved is None: saved = './' os.makedirs(saved, exist_ok=True) seed_everything(0) # for srcp in tqdm(load_exec_list(exec_list)): if osp.isfile(srcp): srcp = osp.dirname(srcp) try: fullpage, infos, part_dict_list = load_parts(srcp) except Exception as e: print(f'failed to load {srcp}: \n') print(e) # optim_before = img_alpha_blending(part_dict_list, final_size=(1024, 1024)) optim_depth(part_dict_list, fullpage) n_components = len(part_dict_list) colors = [] tag_list = [] for ii in range(len(part_dict_list)): pd = part_dict_list[ii] depth = pd['depth'] h, w = depth.shape[:2] pd['depth_median'] = np.median(depth[pd['mask']]) tag_list.append(pd['tag']) color = get_color(VALID_BODY_PARTS_V2.index(pd['tag'])) alpha = pd['img'][..., 3] colors.append(color) pd['img'] = np.full((h, w, 4), (*color, 255)) pd['img'][..., 3] = alpha # pd.pop('depth') part_dict_list.sort(key=lambda x: x['depth_median'], reverse=True) color_code = img_alpha_blending(part_dict_list, final_size=(1024, 1024)) save_dir = osp.join(saved, osp.basename(osp.dirname(srcp))) os.makedirs(save_dir, exist_ok=True) savep = osp.join(save_dir, osp.basename(srcp)) + '.png' alpha = (color_code[..., [3]] / 255.) * 0.8 blended = alpha * color_code[..., :3] + (1 - alpha) * fullpage[..., :3] result = np.round(blended).astype(np.uint8) # print('xxxxx') colors = np.array(colors) colors = colors.astype(np.float32) / 255. px = 1 / plt.rcParams['figure.dpi'] # pixel in inches fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px), facecolor=[0, 0, 0, 0]) fnt_sz = int(5 * result.shape[0] / 256) plt.rcParams['legend.fontsize'] = fnt_sz lw = 5 * result.shape[0] / 256 lines = [Line2D([0], [0], color=colors[i], lw=lw) for i in range(n_components)] # c_labels = [all_labels[i] for i in all_labels] plt.legend(lines, tag_list, mode="expand", fancybox=False, edgecolor="black", # frameon=False, shadow=False, framealpha=0.) plt.tight_layout(pad=0, w_pad=0, h_pad=0) plt.axis('off') fig.canvas.draw() data = np.frombuffer(fig.canvas.buffer_rgba() , dtype=np.uint8) plt.close(fig=fig) data = data.reshape(fig.canvas.get_width_height()[::-1] + (4,)) dx, dy, dw, dh = cv2.boundingRect(cv2.findNonZero(data[..., 3])) data = rgba_to_rgb_fixbg(data[:, dx: dx + dw]) data = cv2.copyMakeBorder(data, 0, 0, fnt_sz, fnt_sz, borderType=cv2.BORDER_CONSTANT, value=(255, 255, 255)) result = np.hstack((result, data)) Image.fromarray(result).save(savep) print(f'result saved to {savep}')