Datasets:
Languages:
English
ArXiv:
Tags:
query-by-example-spoken-term-detection
audio-slot-filling
speaker-diarization
automatic-speaker-verification
License:
Update files from the datasets library (from 1.14.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.14.0
README.md
CHANGED
|
@@ -73,7 +73,7 @@ SUPERB is a leaderboard to benchmark the performance of a shared model across a
|
|
| 73 |
|
| 74 |
### Supported Tasks and Leaderboards
|
| 75 |
|
| 76 |
-
The SUPERB leaderboard can be found here
|
| 77 |
|
| 78 |
#### pr
|
| 79 |
|
|
@@ -205,6 +205,9 @@ An example from each split looks like:
|
|
| 205 |
```python
|
| 206 |
{'chapter_id': 1240,
|
| 207 |
'file': 'path/to/file.flac',
|
|
|
|
|
|
|
|
|
|
| 208 |
'id': '103-1240-0000',
|
| 209 |
'speaker_id': 103,
|
| 210 |
'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
|
|
@@ -220,6 +223,9 @@ An example from each split looks like:
|
|
| 220 |
```python
|
| 221 |
{
|
| 222 |
'file': '/path/yes/af7a8296_nohash_1.wav',
|
|
|
|
|
|
|
|
|
|
| 223 |
'label': 0 # 'yes'
|
| 224 |
}
|
| 225 |
```
|
|
@@ -234,6 +240,9 @@ An example from each split looks like:
|
|
| 234 |
```python
|
| 235 |
{
|
| 236 |
'file': "/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav",
|
|
|
|
|
|
|
|
|
|
| 237 |
'speaker_id': '2BqVo8kVB2Skwgyb',
|
| 238 |
'text': 'Turn the bedroom lights off',
|
| 239 |
'action': 3, # 'deactivate'
|
|
@@ -252,6 +261,9 @@ An example from each split looks like:
|
|
| 252 |
```python
|
| 253 |
{
|
| 254 |
'file': '/path/wav/id10003/na8-QEFmj44/00003.wav',
|
|
|
|
|
|
|
|
|
|
| 255 |
'label': 2 # 'id10003'
|
| 256 |
}
|
| 257 |
```
|
|
@@ -268,6 +280,9 @@ An example from each split looks like:
|
|
| 268 |
{
|
| 269 |
'record_id': '1578-6379-0038_6415-111615-0009',
|
| 270 |
'file': 'path/to/file.wav',
|
|
|
|
|
|
|
|
|
|
| 271 |
'start': 0,
|
| 272 |
'end': 1590,
|
| 273 |
'speakers': [
|
|
@@ -287,6 +302,10 @@ An example from each split looks like:
|
|
| 287 |
|
| 288 |
### Data Fields
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
#### pr
|
| 291 |
|
| 292 |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
|
@@ -294,15 +313,17 @@ An example from each split looks like:
|
|
| 294 |
|
| 295 |
#### asr
|
| 296 |
|
| 297 |
-
- `file
|
| 298 |
-
- `
|
| 299 |
-
- `
|
| 300 |
-
- `
|
| 301 |
-
- `
|
|
|
|
| 302 |
|
| 303 |
#### ks
|
| 304 |
|
| 305 |
- `file` (`string`): Path to the WAV audio file.
|
|
|
|
| 306 |
- `label` (`ClassLabel`): Label of the spoken command. Possible values:
|
| 307 |
- `0: "yes", 1: "no", 2: "up", 3: "down", 4: "left", 5: "right", 6: "on", 7: "off", 8: "stop", 9: "go", 10: "_silence_", 11: "_unknown_"`
|
| 308 |
|
|
@@ -313,6 +334,7 @@ An example from each split looks like:
|
|
| 313 |
#### ic
|
| 314 |
|
| 315 |
- `file` (`string`): Path to the WAV audio file.
|
|
|
|
| 316 |
- `speaker_id` (`string`): ID of the speaker.
|
| 317 |
- `text` (`string`): Transcription of the spoken command.
|
| 318 |
- `action` (`ClassLabel`): Label of the command's action. Possible values:
|
|
@@ -330,6 +352,7 @@ An example from each split looks like:
|
|
| 330 |
#### si
|
| 331 |
|
| 332 |
- `file` (`string`): Path to the WAV audio file.
|
|
|
|
| 333 |
- `label` (`ClassLabel`): Label (ID) of the speaker. Possible values:
|
| 334 |
- `0: "id10001", 1: "id10002", 2: "id10003", ..., 1250: "id11251"`
|
| 335 |
|
|
@@ -343,6 +366,7 @@ An example from each split looks like:
|
|
| 343 |
The data fields in all splits are:
|
| 344 |
- `record_id` (`string`): ID of the record.
|
| 345 |
- `file` (`string`): Path to the WAV audio file.
|
|
|
|
| 346 |
- `start` (`integer`): Start frame of the audio.
|
| 347 |
- `end` (`integer`): End frame of the audio.
|
| 348 |
- `speakers` (`list` of `dict`): List of speakers in the audio. Each item contains the fields:
|
|
@@ -353,6 +377,7 @@ The data fields in all splits are:
|
|
| 353 |
#### er
|
| 354 |
|
| 355 |
- `file` (`string`): Path to the WAV audio file.
|
|
|
|
| 356 |
- `label` (`ClassLabel`): Label of the speech emotion. Possible values:
|
| 357 |
- `0: "neu", 1: "hap", 2: "ang", 3: "sad"`
|
| 358 |
|
|
|
|
| 73 |
|
| 74 |
### Supported Tasks and Leaderboards
|
| 75 |
|
| 76 |
+
The SUPERB leaderboard can be found here https://superbbenchmark.org/leaderboard and consists of the following tasks:
|
| 77 |
|
| 78 |
#### pr
|
| 79 |
|
|
|
|
| 205 |
```python
|
| 206 |
{'chapter_id': 1240,
|
| 207 |
'file': 'path/to/file.flac',
|
| 208 |
+
'audio': {'path': 'path/to/file.flac',
|
| 209 |
+
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
|
| 210 |
+
'sampling_rate': 16000},
|
| 211 |
'id': '103-1240-0000',
|
| 212 |
'speaker_id': 103,
|
| 213 |
'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
|
|
|
|
| 223 |
```python
|
| 224 |
{
|
| 225 |
'file': '/path/yes/af7a8296_nohash_1.wav',
|
| 226 |
+
'audio': {'path': '/path/yes/af7a8296_nohash_1.wav',
|
| 227 |
+
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
|
| 228 |
+
'sampling_rate': 16000},
|
| 229 |
'label': 0 # 'yes'
|
| 230 |
}
|
| 231 |
```
|
|
|
|
| 240 |
```python
|
| 241 |
{
|
| 242 |
'file': "/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav",
|
| 243 |
+
'audio': {'path': '/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav',
|
| 244 |
+
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
|
| 245 |
+
'sampling_rate': 16000},
|
| 246 |
'speaker_id': '2BqVo8kVB2Skwgyb',
|
| 247 |
'text': 'Turn the bedroom lights off',
|
| 248 |
'action': 3, # 'deactivate'
|
|
|
|
| 261 |
```python
|
| 262 |
{
|
| 263 |
'file': '/path/wav/id10003/na8-QEFmj44/00003.wav',
|
| 264 |
+
'audio': {'path': '/path/wav/id10003/na8-QEFmj44/00003.wav',
|
| 265 |
+
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
|
| 266 |
+
'sampling_rate': 16000},
|
| 267 |
'label': 2 # 'id10003'
|
| 268 |
}
|
| 269 |
```
|
|
|
|
| 280 |
{
|
| 281 |
'record_id': '1578-6379-0038_6415-111615-0009',
|
| 282 |
'file': 'path/to/file.wav',
|
| 283 |
+
'audio': {'path': 'path/to/file.wav',
|
| 284 |
+
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
|
| 285 |
+
'sampling_rate': 16000},
|
| 286 |
'start': 0,
|
| 287 |
'end': 1590,
|
| 288 |
'speakers': [
|
|
|
|
| 302 |
|
| 303 |
### Data Fields
|
| 304 |
|
| 305 |
+
####Note abouth the `audio` fields
|
| 306 |
+
|
| 307 |
+
When accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
|
| 308 |
+
|
| 309 |
#### pr
|
| 310 |
|
| 311 |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
|
|
|
| 313 |
|
| 314 |
#### asr
|
| 315 |
|
| 316 |
+
- `file` (`string`): Path to the WAV audio file.
|
| 317 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 318 |
+
- `text` (`string`): The transcription of the audio file.
|
| 319 |
+
- `speaker_id` (`integer`): A unique ID of the speaker. The same speaker id can be found for multiple data samples.
|
| 320 |
+
- `chapter_id` (`integer`): ID of the audiobook chapter which includes the transcription.
|
| 321 |
+
- `id` (`string`): A unique ID of the data sample.
|
| 322 |
|
| 323 |
#### ks
|
| 324 |
|
| 325 |
- `file` (`string`): Path to the WAV audio file.
|
| 326 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 327 |
- `label` (`ClassLabel`): Label of the spoken command. Possible values:
|
| 328 |
- `0: "yes", 1: "no", 2: "up", 3: "down", 4: "left", 5: "right", 6: "on", 7: "off", 8: "stop", 9: "go", 10: "_silence_", 11: "_unknown_"`
|
| 329 |
|
|
|
|
| 334 |
#### ic
|
| 335 |
|
| 336 |
- `file` (`string`): Path to the WAV audio file.
|
| 337 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 338 |
- `speaker_id` (`string`): ID of the speaker.
|
| 339 |
- `text` (`string`): Transcription of the spoken command.
|
| 340 |
- `action` (`ClassLabel`): Label of the command's action. Possible values:
|
|
|
|
| 352 |
#### si
|
| 353 |
|
| 354 |
- `file` (`string`): Path to the WAV audio file.
|
| 355 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 356 |
- `label` (`ClassLabel`): Label (ID) of the speaker. Possible values:
|
| 357 |
- `0: "id10001", 1: "id10002", 2: "id10003", ..., 1250: "id11251"`
|
| 358 |
|
|
|
|
| 366 |
The data fields in all splits are:
|
| 367 |
- `record_id` (`string`): ID of the record.
|
| 368 |
- `file` (`string`): Path to the WAV audio file.
|
| 369 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 370 |
- `start` (`integer`): Start frame of the audio.
|
| 371 |
- `end` (`integer`): End frame of the audio.
|
| 372 |
- `speakers` (`list` of `dict`): List of speakers in the audio. Each item contains the fields:
|
|
|
|
| 377 |
#### er
|
| 378 |
|
| 379 |
- `file` (`string`): Path to the WAV audio file.
|
| 380 |
+
- `audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate.
|
| 381 |
- `label` (`ClassLabel`): Label of the speech emotion. Possible values:
|
| 382 |
- `0: "neu", 1: "hap", 2: "ang", 3: "sad"`
|
| 383 |
|
superb.py
CHANGED
|
@@ -137,6 +137,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 137 |
features=datasets.Features(
|
| 138 |
{
|
| 139 |
"file": datasets.Value("string"),
|
|
|
|
| 140 |
"text": datasets.Value("string"),
|
| 141 |
"speaker_id": datasets.Value("int64"),
|
| 142 |
"chapter_id": datasets.Value("int64"),
|
|
@@ -161,6 +162,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 161 |
features=datasets.Features(
|
| 162 |
{
|
| 163 |
"file": datasets.Value("string"),
|
|
|
|
| 164 |
"label": datasets.ClassLabel(
|
| 165 |
names=[
|
| 166 |
"yes",
|
|
@@ -194,6 +196,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 194 |
features=datasets.Features(
|
| 195 |
{
|
| 196 |
"file": datasets.Value("string"),
|
|
|
|
| 197 |
"speaker_id": datasets.Value("string"),
|
| 198 |
"text": datasets.Value("string"),
|
| 199 |
"action": datasets.ClassLabel(
|
|
@@ -235,6 +238,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 235 |
features=datasets.Features(
|
| 236 |
{
|
| 237 |
"file": datasets.Value("string"),
|
|
|
|
| 238 |
# VoxCeleb1 contains 1251 speaker IDs in range ["id10001",..."id11251"]
|
| 239 |
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
|
| 240 |
}
|
|
@@ -257,6 +261,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 257 |
{
|
| 258 |
"record_id": datasets.Value("string"),
|
| 259 |
"file": datasets.Value("string"),
|
|
|
|
| 260 |
"start": datasets.Value("int64"),
|
| 261 |
"end": datasets.Value("int64"),
|
| 262 |
"speakers": [
|
|
@@ -284,6 +289,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 284 |
features=datasets.Features(
|
| 285 |
{
|
| 286 |
"file": datasets.Value("string"),
|
|
|
|
| 287 |
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
| 288 |
}
|
| 289 |
),
|
|
@@ -440,11 +446,13 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 440 |
id_, transcript = line.split(" ", 1)
|
| 441 |
audio_file = f"{id_}.flac"
|
| 442 |
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
|
|
|
|
| 443 |
yield key, {
|
| 444 |
"id": id_,
|
| 445 |
"speaker_id": speaker_id,
|
| 446 |
"chapter_id": chapter_id,
|
| 447 |
-
"file":
|
|
|
|
| 448 |
"text": transcript,
|
| 449 |
}
|
| 450 |
key += 1
|
|
@@ -460,7 +468,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 460 |
label = "_silence_"
|
| 461 |
else:
|
| 462 |
label = "_unknown_"
|
| 463 |
-
yield key, {"file": audio_file, "label": label}
|
| 464 |
elif self.config.name == "ic":
|
| 465 |
root_path = os.path.join(archive_path, "fluent_speech_commands_dataset")
|
| 466 |
csv_path = os.path.join(root_path, "data", f"{split}_data.csv")
|
|
@@ -469,8 +477,10 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 469 |
next(csv_reader)
|
| 470 |
for row in csv_reader:
|
| 471 |
key, file_path, speaker_id, text, action, object_, location = row
|
|
|
|
| 472 |
yield key, {
|
| 473 |
-
"file":
|
|
|
|
| 474 |
"speaker_id": speaker_id,
|
| 475 |
"text": text,
|
| 476 |
"action": action,
|
|
@@ -486,8 +496,10 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 486 |
if int(split_id) != split:
|
| 487 |
continue
|
| 488 |
speaker_id = file_path.split("/")[0]
|
|
|
|
| 489 |
yield key, {
|
| 490 |
-
"file":
|
|
|
|
| 491 |
"label": speaker_id,
|
| 492 |
}
|
| 493 |
elif self.config.name == "sd":
|
|
@@ -500,6 +512,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 500 |
yield key, {
|
| 501 |
"record_id": rec,
|
| 502 |
"file": data.wavs[rec],
|
|
|
|
| 503 |
"start": st,
|
| 504 |
"end": ed,
|
| 505 |
"speakers": speakers,
|
|
@@ -512,6 +525,7 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 512 |
yield key, {
|
| 513 |
"record_id": rec,
|
| 514 |
"file": data.wavs[rec],
|
|
|
|
| 515 |
"start": st,
|
| 516 |
"end": ed,
|
| 517 |
"speakers": speakers,
|
|
@@ -533,8 +547,10 @@ class Superb(datasets.GeneratorBasedBuilder):
|
|
| 533 |
continue
|
| 534 |
wav_subdir = filename.rsplit("_", 1)[0]
|
| 535 |
filename = f"{filename}.wav"
|
|
|
|
| 536 |
yield key, {
|
| 537 |
-
"file":
|
|
|
|
| 538 |
"label": emo.replace("exc", "hap"),
|
| 539 |
}
|
| 540 |
key += 1
|
|
|
|
| 137 |
features=datasets.Features(
|
| 138 |
{
|
| 139 |
"file": datasets.Value("string"),
|
| 140 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 141 |
"text": datasets.Value("string"),
|
| 142 |
"speaker_id": datasets.Value("int64"),
|
| 143 |
"chapter_id": datasets.Value("int64"),
|
|
|
|
| 162 |
features=datasets.Features(
|
| 163 |
{
|
| 164 |
"file": datasets.Value("string"),
|
| 165 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 166 |
"label": datasets.ClassLabel(
|
| 167 |
names=[
|
| 168 |
"yes",
|
|
|
|
| 196 |
features=datasets.Features(
|
| 197 |
{
|
| 198 |
"file": datasets.Value("string"),
|
| 199 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 200 |
"speaker_id": datasets.Value("string"),
|
| 201 |
"text": datasets.Value("string"),
|
| 202 |
"action": datasets.ClassLabel(
|
|
|
|
| 238 |
features=datasets.Features(
|
| 239 |
{
|
| 240 |
"file": datasets.Value("string"),
|
| 241 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 242 |
# VoxCeleb1 contains 1251 speaker IDs in range ["id10001",..."id11251"]
|
| 243 |
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
|
| 244 |
}
|
|
|
|
| 261 |
{
|
| 262 |
"record_id": datasets.Value("string"),
|
| 263 |
"file": datasets.Value("string"),
|
| 264 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 265 |
"start": datasets.Value("int64"),
|
| 266 |
"end": datasets.Value("int64"),
|
| 267 |
"speakers": [
|
|
|
|
| 289 |
features=datasets.Features(
|
| 290 |
{
|
| 291 |
"file": datasets.Value("string"),
|
| 292 |
+
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 293 |
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
|
| 294 |
}
|
| 295 |
),
|
|
|
|
| 446 |
id_, transcript = line.split(" ", 1)
|
| 447 |
audio_file = f"{id_}.flac"
|
| 448 |
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
|
| 449 |
+
audio_path = os.path.join(transcript_dir_path, audio_file)
|
| 450 |
yield key, {
|
| 451 |
"id": id_,
|
| 452 |
"speaker_id": speaker_id,
|
| 453 |
"chapter_id": chapter_id,
|
| 454 |
+
"file": audio_path,
|
| 455 |
+
"audio": audio_path,
|
| 456 |
"text": transcript,
|
| 457 |
}
|
| 458 |
key += 1
|
|
|
|
| 468 |
label = "_silence_"
|
| 469 |
else:
|
| 470 |
label = "_unknown_"
|
| 471 |
+
yield key, {"file": audio_file, "audio": audio_file, "label": label}
|
| 472 |
elif self.config.name == "ic":
|
| 473 |
root_path = os.path.join(archive_path, "fluent_speech_commands_dataset")
|
| 474 |
csv_path = os.path.join(root_path, "data", f"{split}_data.csv")
|
|
|
|
| 477 |
next(csv_reader)
|
| 478 |
for row in csv_reader:
|
| 479 |
key, file_path, speaker_id, text, action, object_, location = row
|
| 480 |
+
audio_path = os.path.join(root_path, file_path)
|
| 481 |
yield key, {
|
| 482 |
+
"file": audio_path,
|
| 483 |
+
"audio": audio_path,
|
| 484 |
"speaker_id": speaker_id,
|
| 485 |
"text": text,
|
| 486 |
"action": action,
|
|
|
|
| 496 |
if int(split_id) != split:
|
| 497 |
continue
|
| 498 |
speaker_id = file_path.split("/")[0]
|
| 499 |
+
audio_path = os.path.join(wav_path, file_path)
|
| 500 |
yield key, {
|
| 501 |
+
"file": audio_path,
|
| 502 |
+
"audio": audio_path,
|
| 503 |
"label": speaker_id,
|
| 504 |
}
|
| 505 |
elif self.config.name == "sd":
|
|
|
|
| 512 |
yield key, {
|
| 513 |
"record_id": rec,
|
| 514 |
"file": data.wavs[rec],
|
| 515 |
+
"audio": data.wavs[rec],
|
| 516 |
"start": st,
|
| 517 |
"end": ed,
|
| 518 |
"speakers": speakers,
|
|
|
|
| 525 |
yield key, {
|
| 526 |
"record_id": rec,
|
| 527 |
"file": data.wavs[rec],
|
| 528 |
+
"audio": data.wavs[rec],
|
| 529 |
"start": st,
|
| 530 |
"end": ed,
|
| 531 |
"speakers": speakers,
|
|
|
|
| 547 |
continue
|
| 548 |
wav_subdir = filename.rsplit("_", 1)[0]
|
| 549 |
filename = f"{filename}.wav"
|
| 550 |
+
audio_path = os.path.join(wav_path, wav_subdir, filename)
|
| 551 |
yield key, {
|
| 552 |
+
"file": audio_path,
|
| 553 |
+
"audio": audio_path,
|
| 554 |
"label": emo.replace("exc", "hap"),
|
| 555 |
}
|
| 556 |
key += 1
|