Datasets:
Commit
·
fb5267f
1
Parent(s):
c1c4bf0
Create lila.py
Browse files
lila.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
| 15 |
+
"""TODO: Add a description here."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import csv
|
| 19 |
+
import json
|
| 20 |
+
import os
|
| 21 |
+
import math
|
| 22 |
+
import requests
|
| 23 |
+
from io import BytesIO
|
| 24 |
+
from zipfile import ZipFile
|
| 25 |
+
from urllib.request import urlopen
|
| 26 |
+
import pandas as pd
|
| 27 |
+
|
| 28 |
+
import datasets
|
| 29 |
+
|
| 30 |
+
# TODO: Add BibTeX citation
|
| 31 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 32 |
+
_CITATION = """\
|
| 33 |
+
@InProceedings{huggingface:dataset,
|
| 34 |
+
title = {A great new dataset},
|
| 35 |
+
author={huggingface, Inc.
|
| 36 |
+
},
|
| 37 |
+
year={2020}
|
| 38 |
+
}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
# TODO: Add description of the dataset here
|
| 42 |
+
# You can copy an official description
|
| 43 |
+
_DESCRIPTION = """\
|
| 44 |
+
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
# TODO: Add a link to an official homepage for the dataset here
|
| 48 |
+
_HOMEPAGE = ""
|
| 49 |
+
|
| 50 |
+
# TODO: Add the licence for the dataset here if you can find it
|
| 51 |
+
_LICENSE = ""
|
| 52 |
+
|
| 53 |
+
_LILA_SAS_URLS = pd.read_csv("https://lila.science/wp-content/uploads/2020/03/lila_sas_urls.txt")
|
| 54 |
+
_LILA_SAS_URLS.rename(columns={"# name": "name"}, inplace=True)
|
| 55 |
+
|
| 56 |
+
# How do I make these point to the particular commit ID?
|
| 57 |
+
_LILA_URLS = {
|
| 58 |
+
"Caltech Camera Traps": "https://huggingface.co/datasets/NimaBoscarino/LILA/resolve/main/data/Caltech_Camera_Traps.jsonl",
|
| 59 |
+
"ENA24": "https://huggingface.co/datasets/NimaBoscarino/LILA/resolve/main/data/ENA24.jsonl",
|
| 60 |
+
"Missouri Camera Traps": "",
|
| 61 |
+
"NACTI": "",
|
| 62 |
+
"WCS Camera Traps": "",
|
| 63 |
+
"Wellington Camera Traps": "",
|
| 64 |
+
"Island Conservation Camera Traps": "",
|
| 65 |
+
"Channel Islands Camera Traps": "",
|
| 66 |
+
"Idaho Camera Traps": "",
|
| 67 |
+
"Snapshot Serengeti": "",
|
| 68 |
+
"Snapshot Karoo": "",
|
| 69 |
+
"Snapshot Kgalagadi": "",
|
| 70 |
+
"Snapshot Enonkishu": "",
|
| 71 |
+
"Snapshot Camdeboo": "",
|
| 72 |
+
"Snapshot Mountain Zebra": "",
|
| 73 |
+
"Snapshot Kruger": "",
|
| 74 |
+
"SWG Camera Traps": "",
|
| 75 |
+
"Orinoquia Camera Traps": "",
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
class LILAConfig(datasets.BuilderConfig):
|
| 79 |
+
"""Builder Config for LILA"""
|
| 80 |
+
|
| 81 |
+
def __init__(self, image_base_url, metadata_url, **kwargs):
|
| 82 |
+
"""BuilderConfig for LILA.
|
| 83 |
+
Args:
|
| 84 |
+
**kwargs: keyword arguments forwarded to super.
|
| 85 |
+
"""
|
| 86 |
+
super(LILAConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
| 87 |
+
self.image_base_url = image_base_url
|
| 88 |
+
self.metadata_url = metadata_url
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class LILA(datasets.GeneratorBasedBuilder):
|
| 92 |
+
"""TODO: Short description of my dataset."""
|
| 93 |
+
|
| 94 |
+
VERSION = datasets.Version("1.1.0")
|
| 95 |
+
|
| 96 |
+
BUILDER_CONFIGS = [
|
| 97 |
+
LILAConfig(
|
| 98 |
+
name=row.name,
|
| 99 |
+
# description="TODO: Description",
|
| 100 |
+
image_base_url=row.image_base_url,
|
| 101 |
+
metadata_url=_LILA_URLS[row.name]
|
| 102 |
+
) for row in _LILA_SAS_URLS.itertuples()
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
def _get_features(self) -> datasets.Features:
|
| 106 |
+
# TODO: Use ClassLabel for categories...
|
| 107 |
+
# TODO: Deal with 404s -> In my manual preprocessing, or in the datasets library?
|
| 108 |
+
|
| 109 |
+
match self.config.name:
|
| 110 |
+
case 'Caltech Camera Traps':
|
| 111 |
+
return datasets.Features({
|
| 112 |
+
"id": datasets.Value("string"), "file_name": datasets.Value("string"),
|
| 113 |
+
"width": datasets.Value("int32"), "height": datasets.Value("int32"),
|
| 114 |
+
"seq_num_frames": datasets.Value("int32"),
|
| 115 |
+
"date_captured": datasets.Value("date32"),
|
| 116 |
+
"seq_id": datasets.Value("string"),
|
| 117 |
+
"location": datasets.Value("string"),
|
| 118 |
+
"rights_holder": datasets.Value("string"),
|
| 119 |
+
"frame_num": datasets.Value("int32"),
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
"annotations": datasets.Sequence({
|
| 123 |
+
"id": datasets.Value("string"),
|
| 124 |
+
"category_id": datasets.Value("int32"),
|
| 125 |
+
}),
|
| 126 |
+
|
| 127 |
+
"bboxes": datasets.Sequence({
|
| 128 |
+
"id": datasets.Value("string"),
|
| 129 |
+
"category_id": datasets.Value("int32"),
|
| 130 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
| 131 |
+
}),
|
| 132 |
+
|
| 133 |
+
"image": datasets.Image(decode=False),
|
| 134 |
+
})
|
| 135 |
+
case 'ENA24':
|
| 136 |
+
return datasets.Features({
|
| 137 |
+
"id": datasets.Value("string"), "file_name": datasets.Value("string"),
|
| 138 |
+
"width": datasets.Value("int32"), "height": datasets.Value("int32"),
|
| 139 |
+
"annotations": datasets.Sequence({
|
| 140 |
+
"id": datasets.Value("string"),
|
| 141 |
+
"category_id": datasets.Value("int32"),
|
| 142 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
| 143 |
+
}),
|
| 144 |
+
"image": datasets.Image(decode=False),
|
| 145 |
+
})
|
| 146 |
+
|
| 147 |
+
def _info(self):
|
| 148 |
+
features = self._get_features()
|
| 149 |
+
|
| 150 |
+
return datasets.DatasetInfo(
|
| 151 |
+
# This is the description that will appear on the datasets page.
|
| 152 |
+
description=_DESCRIPTION,
|
| 153 |
+
# This defines the different columns of the dataset and their types
|
| 154 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 155 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 156 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 157 |
+
# supervised_keys=("sentence", "label"),
|
| 158 |
+
# Homepage of the dataset for documentation
|
| 159 |
+
homepage=_HOMEPAGE,
|
| 160 |
+
# License for the dataset if available
|
| 161 |
+
license=_LICENSE,
|
| 162 |
+
# Citation for the dataset
|
| 163 |
+
citation=_CITATION,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def _split_generators(self, dl_manager):
|
| 167 |
+
archive_path = dl_manager.download_and_extract(self.config.metadata_url)
|
| 168 |
+
|
| 169 |
+
return [
|
| 170 |
+
datasets.SplitGenerator(
|
| 171 |
+
name=datasets.Split.TRAIN,
|
| 172 |
+
gen_kwargs={
|
| 173 |
+
"filepath": archive_path,
|
| 174 |
+
"split": "train",
|
| 175 |
+
},
|
| 176 |
+
),
|
| 177 |
+
]
|
| 178 |
+
|
| 179 |
+
def _generate_examples(self, filepath, split):
|
| 180 |
+
with open(filepath) as f:
|
| 181 |
+
for line in f:
|
| 182 |
+
example = json.loads(line)
|
| 183 |
+
image_url = f"{self.config.image_base_url}/{example['file_name']}"
|
| 184 |
+
yield example["id"], {
|
| 185 |
+
**example,
|
| 186 |
+
"image": image_url
|
| 187 |
+
}
|