Datasets:
				
			
			
	
			
	
		
			
	
		Tasks:
	
	
	
	
	Text Classification
	
	
	Modalities:
	
	
	
		
	
	Text
	
	
	Formats:
	
	
	
		
	
	parquet
	
	
	Sub-tasks:
	
	
	
	
	sentiment-classification
	
	
	Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	100K - 1M
	
	
	License:
	
	
	
	
	
	
	
Commit 
							
							·
						
						9fd6e32
	
0
								Parent(s):
							
							
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- imdb.py +122 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bin.* filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            *.zstandard filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        dataset_infos.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"plain_text": {"description": "Large Movie Review Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.", "citation": "@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},\n  title     = {Learning Word Vectors for Sentiment Analysis},\n  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},\n  month     = {June},\n  year      = {2011},\n  address   = {Portland, Oregon, USA},\n  publisher = {Association for Computational Linguistics},\n  pages     = {142--150},\n  url       = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "http://ai.stanford.edu/~amaas/data/sentiment/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": null, "builder_name": "imdb", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 32660064, "num_examples": 25000, "dataset_name": "imdb"}, "train": {"name": "train", "num_bytes": 33442202, "num_examples": 25000, "dataset_name": "imdb"}, "unsupervised": {"name": "unsupervised", "num_bytes": 67125548, "num_examples": 50000, "dataset_name": "imdb"}}, "download_checksums": {"http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz": {"num_bytes": 84125825, "checksum": "c40f74a18d3b61f90feba1e17730e0d38e8b97c05fde7008942e91923d1658fe"}}, "download_size": 84125825, "dataset_size": 133227814, "size_in_bytes": 217353639}}
         | 
    	
        dummy/plain_text/1.0.0/dummy_data.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:570a8f885827a2f340aec4a9f8b3452d037ee361ae00aa97c12d85bf3fc59e6a
         | 
| 3 | 
            +
            size 4699
         | 
    	
        imdb.py
    ADDED
    
    | @@ -0,0 +1,122 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Lint as: python3
         | 
| 17 | 
            +
            """IMDB movie reviews dataset."""
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from __future__ import absolute_import, division, print_function
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import os
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import datasets
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            _DESCRIPTION = """\
         | 
| 27 | 
            +
            Large Movie Review Dataset.
         | 
| 28 | 
            +
            This is a dataset for binary sentiment classification containing substantially \
         | 
| 29 | 
            +
            more data than previous benchmark datasets. We provide a set of 25,000 highly \
         | 
| 30 | 
            +
            polar movie reviews for training, and 25,000 for testing. There is additional \
         | 
| 31 | 
            +
            unlabeled data for use as well.\
         | 
| 32 | 
            +
            """
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            _CITATION = """\
         | 
| 35 | 
            +
            @InProceedings{maas-EtAl:2011:ACL-HLT2011,
         | 
| 36 | 
            +
              author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
         | 
| 37 | 
            +
              title     = {Learning Word Vectors for Sentiment Analysis},
         | 
| 38 | 
            +
              booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
         | 
| 39 | 
            +
              month     = {June},
         | 
| 40 | 
            +
              year      = {2011},
         | 
| 41 | 
            +
              address   = {Portland, Oregon, USA},
         | 
| 42 | 
            +
              publisher = {Association for Computational Linguistics},
         | 
| 43 | 
            +
              pages     = {142--150},
         | 
| 44 | 
            +
              url       = {http://www.aclweb.org/anthology/P11-1015}
         | 
| 45 | 
            +
            }
         | 
| 46 | 
            +
            """
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            _DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class IMDBReviewsConfig(datasets.BuilderConfig):
         | 
| 52 | 
            +
                """BuilderConfig for IMDBReviews."""
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def __init__(self, **kwargs):
         | 
| 55 | 
            +
                    """BuilderConfig for IMDBReviews.
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    Args:
         | 
| 58 | 
            +
                      **kwargs: keyword arguments forwarded to super.
         | 
| 59 | 
            +
                    """
         | 
| 60 | 
            +
                    super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            class Imdb(datasets.GeneratorBasedBuilder):
         | 
| 64 | 
            +
                """IMDB movie reviews dataset."""
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                BUILDER_CONFIGS = [
         | 
| 67 | 
            +
                    IMDBReviewsConfig(
         | 
| 68 | 
            +
                        name="plain_text",
         | 
| 69 | 
            +
                        description="Plain text",
         | 
| 70 | 
            +
                    )
         | 
| 71 | 
            +
                ]
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                def _info(self):
         | 
| 74 | 
            +
                    return datasets.DatasetInfo(
         | 
| 75 | 
            +
                        description=_DESCRIPTION,
         | 
| 76 | 
            +
                        features=datasets.Features(
         | 
| 77 | 
            +
                            {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
         | 
| 78 | 
            +
                        ),
         | 
| 79 | 
            +
                        supervised_keys=None,
         | 
| 80 | 
            +
                        homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
         | 
| 81 | 
            +
                        citation=_CITATION,
         | 
| 82 | 
            +
                    )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def _vocab_text_gen(self, archive):
         | 
| 85 | 
            +
                    for _, ex in self._generate_examples(archive, os.path.join("aclImdb", "train")):
         | 
| 86 | 
            +
                        yield ex["text"]
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def _split_generators(self, dl_manager):
         | 
| 89 | 
            +
                    arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
         | 
| 90 | 
            +
                    data_dir = os.path.join(arch_path, "aclImdb")
         | 
| 91 | 
            +
                    return [
         | 
| 92 | 
            +
                        datasets.SplitGenerator(
         | 
| 93 | 
            +
                            name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train")}
         | 
| 94 | 
            +
                        ),
         | 
| 95 | 
            +
                        datasets.SplitGenerator(
         | 
| 96 | 
            +
                            name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test")}
         | 
| 97 | 
            +
                        ),
         | 
| 98 | 
            +
                        datasets.SplitGenerator(
         | 
| 99 | 
            +
                            name=datasets.Split("unsupervised"),
         | 
| 100 | 
            +
                            gen_kwargs={"directory": os.path.join(data_dir, "train"), "labeled": False},
         | 
| 101 | 
            +
                        ),
         | 
| 102 | 
            +
                    ]
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def _generate_examples(self, directory, labeled=True):
         | 
| 105 | 
            +
                    """Generate IMDB examples."""
         | 
| 106 | 
            +
                    # For labeled examples, extract the label from the path.
         | 
| 107 | 
            +
                    if labeled:
         | 
| 108 | 
            +
                        files = {
         | 
| 109 | 
            +
                            "pos": sorted(os.listdir(os.path.join(directory, "pos"))),
         | 
| 110 | 
            +
                            "neg": sorted(os.listdir(os.path.join(directory, "neg"))),
         | 
| 111 | 
            +
                        }
         | 
| 112 | 
            +
                        for key in files:
         | 
| 113 | 
            +
                            for id_, file in enumerate(files[key]):
         | 
| 114 | 
            +
                                filepath = os.path.join(directory, key, file)
         | 
| 115 | 
            +
                                with open(filepath, encoding="UTF-8") as f:
         | 
| 116 | 
            +
                                    yield key + "_" + str(id_), {"text": f.read(), "label": key}
         | 
| 117 | 
            +
                    else:
         | 
| 118 | 
            +
                        unsup_files = sorted(os.listdir(os.path.join(directory, "unsup")))
         | 
| 119 | 
            +
                        for id_, file in enumerate(unsup_files):
         | 
| 120 | 
            +
                            filepath = os.path.join(directory, "unsup", file)
         | 
| 121 | 
            +
                            with open(filepath, encoding="UTF-8") as f:
         | 
| 122 | 
            +
                                yield id_, {"text": f.read(), "label": -1}
         | 

