Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """SST-2 (Stanford Sentiment Treebank v2) dataset.""" | |
| import csv | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{socher2013recursive, | |
| title={Recursive deep models for semantic compositionality over a sentiment treebank}, | |
| author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher}, | |
| booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing}, | |
| pages={1631--1642}, | |
| year={2013} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The Stanford Sentiment Treebank consists of sentences from movie reviews and | |
| human annotations of their sentiment. The task is to predict the sentiment of a | |
| given sentence. We use the two-way (positive/negative) class split, and use only | |
| sentence-level labels. | |
| """ | |
| _HOMEPAGE = "https://nlp.stanford.edu/sentiment/" | |
| _LICENSE = "Unknown" | |
| _URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip" | |
| class Sst2(datasets.GeneratorBasedBuilder): | |
| """SST-2 dataset.""" | |
| VERSION = datasets.Version("2.0.0") | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "idx": datasets.Value("int32"), | |
| "sentence": datasets.Value("string"), | |
| "label": datasets.features.ClassLabel(names=["negative", "positive"]), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| dl_dir = dl_manager.download_and_extract(_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "file_paths": dl_manager.iter_files(dl_dir), | |
| "data_filename": "train.tsv", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "file_paths": dl_manager.iter_files(dl_dir), | |
| "data_filename": "dev.tsv", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "file_paths": dl_manager.iter_files(dl_dir), | |
| "data_filename": "test.tsv", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, file_paths, data_filename): | |
| for file_path in file_paths: | |
| filename = os.path.basename(file_path) | |
| if filename == data_filename: | |
| with open(file_path, encoding="utf8") as f: | |
| reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
| for idx, row in enumerate(reader): | |
| yield idx, { | |
| "idx": row["index"] if "index" in row else idx, | |
| "sentence": row["sentence"], | |
| "label": int(row["label"]) if "label" in row else -1, | |
| } | |