|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Convert document images to markdown using LightOnOCR with vLLM. |
|
|
|
|
|
LightOnOCR is a compact 1B multilingual OCR model optimized for production speed. |
|
|
Combines Pixtral ViT encoder with Qwen3 language model for efficient document parsing. |
|
|
|
|
|
NOTE: Requires vLLM nightly wheels for LightOnOCR support. First run may take |
|
|
a few minutes to download and install dependencies. |
|
|
|
|
|
Features: |
|
|
- β‘ Fastest: 5.71 pages/sec on H100 GPU |
|
|
- π― Compact: Only 1B parameters |
|
|
- π Multilingual with European language optimization |
|
|
- π LaTeX formula recognition |
|
|
- π Table extraction (markdown format) |
|
|
- π Document structure preservation |
|
|
- π€ 3 vocabulary sizes (151k/32k/16k tokens) |
|
|
|
|
|
Model: lightonai/LightOnOCR-1B-1025 |
|
|
vLLM: Requires nightly build from main branch |
|
|
Performance: 76.1% overall benchmark score |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import base64 |
|
|
import io |
|
|
import json |
|
|
import logging |
|
|
import os |
|
|
import sys |
|
|
from typing import Any, Dict, List, Union |
|
|
from datetime import datetime |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from huggingface_hub import DatasetCard, login |
|
|
from PIL import Image |
|
|
from toolz import partition_all |
|
|
from tqdm.auto import tqdm |
|
|
from vllm import LLM, SamplingParams |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
MODEL_VARIANTS = { |
|
|
"151k": "lightonai/LightOnOCR-1B-1025", |
|
|
"32k": "lightonai/LightOnOCR-0.9B-32k-1025", |
|
|
"16k": "lightonai/LightOnOCR-0.9B-16k-1025", |
|
|
} |
|
|
|
|
|
|
|
|
def check_cuda_availability(): |
|
|
"""Check if CUDA is available and exit if not.""" |
|
|
if not torch.cuda.is_available(): |
|
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
|
logger.error("Please run on a machine with a CUDA-capable GPU.") |
|
|
sys.exit(1) |
|
|
else: |
|
|
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") |
|
|
|
|
|
|
|
|
def resize_image_to_target(image: Image.Image, target_size: int = 1540) -> Image.Image: |
|
|
""" |
|
|
Resize image so longest dimension is target_size while maintaining aspect ratio. |
|
|
|
|
|
LightOnOCR was trained with images at 1540px max resolution and 200 DPI. |
|
|
""" |
|
|
width, height = image.size |
|
|
|
|
|
|
|
|
if max(width, height) <= target_size: |
|
|
return image |
|
|
|
|
|
|
|
|
if width > height: |
|
|
new_width = target_size |
|
|
new_height = int(height * (target_size / width)) |
|
|
else: |
|
|
new_height = target_size |
|
|
new_width = int(width * (target_size / height)) |
|
|
|
|
|
return image.resize((new_width, new_height), Image.Resampling.LANCZOS) |
|
|
|
|
|
|
|
|
def make_ocr_message( |
|
|
image: Union[Image.Image, Dict[str, Any], str], |
|
|
resize: bool = True, |
|
|
target_size: int = 1540, |
|
|
) -> List[Dict]: |
|
|
""" |
|
|
Create chat message for OCR processing. |
|
|
|
|
|
LightOnOCR was trained with 1540px max resolution at 200 DPI for optimal results. |
|
|
""" |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
|
pil_img = image |
|
|
elif isinstance(image, dict) and "bytes" in image: |
|
|
pil_img = Image.open(io.BytesIO(image["bytes"])) |
|
|
elif isinstance(image, str): |
|
|
pil_img = Image.open(image) |
|
|
else: |
|
|
raise ValueError(f"Unsupported image type: {type(image)}") |
|
|
|
|
|
|
|
|
pil_img = pil_img.convert("RGB") |
|
|
|
|
|
|
|
|
if resize: |
|
|
pil_img = resize_image_to_target(pil_img, target_size) |
|
|
logger.debug(f"Resized image to {pil_img.size}") |
|
|
|
|
|
|
|
|
buf = io.BytesIO() |
|
|
pil_img.save(buf, format="PNG") |
|
|
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}" |
|
|
|
|
|
|
|
|
|
|
|
return [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "text", "text": ""}, |
|
|
{"type": "image_url", "image_url": {"url": data_uri}}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
def create_dataset_card( |
|
|
source_dataset: str, |
|
|
model: str, |
|
|
vocab_size: str, |
|
|
num_samples: int, |
|
|
processing_time: str, |
|
|
batch_size: int, |
|
|
max_model_len: int, |
|
|
max_tokens: int, |
|
|
gpu_memory_utilization: float, |
|
|
temperature: float, |
|
|
top_p: float, |
|
|
target_size: int, |
|
|
image_column: str = "image", |
|
|
split: str = "train", |
|
|
) -> str: |
|
|
"""Create a dataset card documenting the OCR process.""" |
|
|
model_name = model.split("/")[-1] |
|
|
|
|
|
return f"""--- |
|
|
tags: |
|
|
- ocr |
|
|
- document-processing |
|
|
- lighton-ocr |
|
|
- markdown |
|
|
- uv-script |
|
|
- generated |
|
|
--- |
|
|
|
|
|
# Document OCR using {model_name} |
|
|
|
|
|
This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using LightOnOCR, a fast and compact 1B OCR model. |
|
|
|
|
|
## Processing Details |
|
|
|
|
|
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) |
|
|
- **Model**: [{model}](https://huggingface.co/{model}) |
|
|
- **Vocabulary Size**: {vocab_size} tokens |
|
|
- **Number of Samples**: {num_samples:,} |
|
|
- **Processing Time**: {processing_time} |
|
|
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} |
|
|
|
|
|
### Configuration |
|
|
|
|
|
- **Image Column**: `{image_column}` |
|
|
- **Output Column**: `markdown` |
|
|
- **Dataset Split**: `{split}` |
|
|
- **Batch Size**: {batch_size} |
|
|
- **Target Image Size**: {target_size}px (longest dimension) |
|
|
- **Max Model Length**: {max_model_len:,} tokens |
|
|
- **Max Output Tokens**: {max_tokens:,} |
|
|
- **Temperature**: {temperature} |
|
|
- **Top P**: {top_p} |
|
|
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%} |
|
|
|
|
|
## Model Information |
|
|
|
|
|
LightOnOCR is a fast, compact OCR model that excels at: |
|
|
- β‘ **Production Speed** - 5.71 pages/second on H100 GPU |
|
|
- π― **Compact Size** - Only 1B parameters |
|
|
- π **LaTeX formulas** - Mathematical notation in LaTeX format |
|
|
- π **Tables** - Extracted and formatted as markdown |
|
|
- π **Document structure** - Hierarchy and layout preservation |
|
|
- π **Multilingual** - Optimized for European languages |
|
|
- π€ **Flexible vocabulary** - 151k/32k/16k token variants |
|
|
|
|
|
### Vocabulary Variants |
|
|
|
|
|
- **151k tokens**: Full vocabulary, supports all languages |
|
|
- **32k tokens**: European languages optimized (~12% faster decoding) |
|
|
- **16k tokens**: European languages optimized (~12% faster decoding) |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset contains all original columns plus: |
|
|
- `markdown`: The extracted text in markdown format with LaTeX formulas |
|
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import json |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("{{output_dataset_id}}", split="{split}") |
|
|
|
|
|
# Access the markdown text |
|
|
for example in dataset: |
|
|
print(example["markdown"]) |
|
|
break |
|
|
|
|
|
# View all OCR models applied to this dataset |
|
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
|
for info in inference_info: |
|
|
print(f"Column: {{info['column_name']}} - Model: {{info['model_id']}}") |
|
|
``` |
|
|
|
|
|
## Reproduction |
|
|
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) LightOnOCR script: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\ |
|
|
{source_dataset} \\ |
|
|
<output-dataset> \\ |
|
|
--vocab-size {vocab_size} \\ |
|
|
--image-column {image_column} \\ |
|
|
--batch-size {batch_size} |
|
|
``` |
|
|
|
|
|
## Performance |
|
|
|
|
|
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second |
|
|
- **Benchmark Score**: 76.1% overall (across diverse document types) |
|
|
- **Optimization**: Native resolution ViT + lightweight decoder |
|
|
|
|
|
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) |
|
|
""" |
|
|
|
|
|
|
|
|
def main( |
|
|
input_dataset: str, |
|
|
output_dataset: str, |
|
|
image_column: str = "image", |
|
|
batch_size: int = 16, |
|
|
vocab_size: str = "151k", |
|
|
max_model_len: int = 8192, |
|
|
max_tokens: int = 6500, |
|
|
temperature: float = 0.2, |
|
|
top_p: float = 0.9, |
|
|
gpu_memory_utilization: float = 0.8, |
|
|
target_size: int = 1540, |
|
|
no_resize: bool = False, |
|
|
hf_token: str = None, |
|
|
split: str = "train", |
|
|
max_samples: int = None, |
|
|
private: bool = False, |
|
|
shuffle: bool = False, |
|
|
seed: int = 42, |
|
|
output_column: str = "markdown", |
|
|
): |
|
|
"""Process images from HF dataset through LightOnOCR model.""" |
|
|
|
|
|
|
|
|
check_cuda_availability() |
|
|
|
|
|
|
|
|
start_time = datetime.now() |
|
|
|
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") |
|
|
if HF_TOKEN: |
|
|
login(token=HF_TOKEN) |
|
|
|
|
|
|
|
|
if vocab_size not in MODEL_VARIANTS: |
|
|
raise ValueError( |
|
|
f"Invalid vocab_size '{vocab_size}'. Choose from: {list(MODEL_VARIANTS.keys())}" |
|
|
) |
|
|
model = MODEL_VARIANTS[vocab_size] |
|
|
logger.info(f"Using model: {model} ({vocab_size} vocabulary)") |
|
|
|
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
|
dataset = load_dataset(input_dataset, split=split) |
|
|
|
|
|
|
|
|
if image_column not in dataset.column_names: |
|
|
raise ValueError( |
|
|
f"Column '{image_column}' not found. Available: {dataset.column_names}" |
|
|
) |
|
|
|
|
|
|
|
|
if shuffle: |
|
|
logger.info(f"Shuffling dataset with seed {seed}") |
|
|
dataset = dataset.shuffle(seed=seed) |
|
|
|
|
|
|
|
|
if max_samples: |
|
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
|
logger.info(f"Limited to {len(dataset)} samples") |
|
|
|
|
|
|
|
|
logger.info(f"Initializing vLLM with LightOnOCR") |
|
|
logger.info("This may take a few minutes on first run...") |
|
|
llm = LLM( |
|
|
model=model, |
|
|
trust_remote_code=True, |
|
|
max_model_len=max_model_len, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
limit_mm_per_prompt={"image": 1}, |
|
|
enforce_eager=False, |
|
|
) |
|
|
|
|
|
|
|
|
sampling_params = SamplingParams( |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
max_tokens=max_tokens, |
|
|
) |
|
|
|
|
|
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") |
|
|
logger.info(f"Output will be written to column: {output_column}") |
|
|
if not no_resize: |
|
|
logger.info(f"Images will be resized to {target_size}px (longest dimension)") |
|
|
|
|
|
|
|
|
all_outputs = [] |
|
|
|
|
|
for batch_indices in tqdm( |
|
|
partition_all(batch_size, range(len(dataset))), |
|
|
total=(len(dataset) + batch_size - 1) // batch_size, |
|
|
desc="LightOnOCR processing", |
|
|
): |
|
|
batch_indices = list(batch_indices) |
|
|
batch_images = [dataset[i][image_column] for i in batch_indices] |
|
|
|
|
|
try: |
|
|
|
|
|
batch_messages = [ |
|
|
make_ocr_message(img, resize=not no_resize, target_size=target_size) |
|
|
for img in batch_images |
|
|
] |
|
|
|
|
|
|
|
|
outputs = llm.chat(batch_messages, sampling_params) |
|
|
|
|
|
|
|
|
for output in outputs: |
|
|
text = output.outputs[0].text.strip() |
|
|
all_outputs.append(text) |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error processing batch: {e}") |
|
|
|
|
|
all_outputs.extend(["[OCR ERROR]"] * len(batch_images)) |
|
|
|
|
|
|
|
|
processing_duration = datetime.now() - start_time |
|
|
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min" |
|
|
|
|
|
|
|
|
logger.info(f"Adding '{output_column}' column to dataset") |
|
|
dataset = dataset.add_column(output_column, all_outputs) |
|
|
|
|
|
|
|
|
inference_entry = { |
|
|
"model_id": model, |
|
|
"model_name": "LightOnOCR", |
|
|
"vocab_size": vocab_size, |
|
|
"column_name": output_column, |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"temperature": temperature, |
|
|
"top_p": top_p, |
|
|
"max_tokens": max_tokens, |
|
|
"target_size": target_size if not no_resize else "original", |
|
|
} |
|
|
|
|
|
if "inference_info" in dataset.column_names: |
|
|
|
|
|
logger.info("Updating existing inference_info column") |
|
|
|
|
|
def update_inference_info(example): |
|
|
try: |
|
|
existing_info = json.loads(example["inference_info"]) if example["inference_info"] else [] |
|
|
except (json.JSONDecodeError, TypeError): |
|
|
existing_info = [] |
|
|
|
|
|
existing_info.append(inference_entry) |
|
|
return {"inference_info": json.dumps(existing_info)} |
|
|
|
|
|
dataset = dataset.map(update_inference_info) |
|
|
else: |
|
|
|
|
|
logger.info("Creating new inference_info column") |
|
|
inference_list = [json.dumps([inference_entry])] * len(dataset) |
|
|
dataset = dataset.add_column("inference_info", inference_list) |
|
|
|
|
|
|
|
|
logger.info(f"Pushing to {output_dataset}") |
|
|
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) |
|
|
|
|
|
|
|
|
logger.info("Creating dataset card") |
|
|
card_content = create_dataset_card( |
|
|
source_dataset=input_dataset, |
|
|
model=model, |
|
|
vocab_size=vocab_size, |
|
|
num_samples=len(dataset), |
|
|
processing_time=processing_time_str, |
|
|
batch_size=batch_size, |
|
|
max_model_len=max_model_len, |
|
|
max_tokens=max_tokens, |
|
|
gpu_memory_utilization=gpu_memory_utilization, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
target_size=target_size, |
|
|
image_column=image_column, |
|
|
split=split, |
|
|
) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
|
card.push_to_hub(output_dataset, token=HF_TOKEN) |
|
|
|
|
|
logger.info("β
LightOnOCR processing complete!") |
|
|
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}") |
|
|
logger.info(f"Processing time: {processing_time_str}") |
|
|
logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if len(sys.argv) == 1: |
|
|
print("=" * 80) |
|
|
print("LightOnOCR Document Processing") |
|
|
print("=" * 80) |
|
|
print("\nFast, compact 1B OCR model for production workloads") |
|
|
print("\nFeatures:") |
|
|
print("- β‘ Fastest processing: 5.71 pages/sec on H100") |
|
|
print("- π― Compact: Only 1B parameters") |
|
|
print("- π Multilingual with European language optimization") |
|
|
print("- π LaTeX formula recognition") |
|
|
print("- π Table extraction (markdown format)") |
|
|
print("- π€ 3 vocabulary sizes for speed/quality tradeoffs") |
|
|
print("\nExample usage:") |
|
|
print("\n1. Basic OCR (full vocabulary):") |
|
|
print(" uv run lighton-ocr.py input-dataset output-dataset") |
|
|
print("\n2. European languages optimized (faster):") |
|
|
print(" uv run lighton-ocr.py docs results --vocab-size 32k") |
|
|
print("\n3. Custom batch size for performance:") |
|
|
print(" uv run lighton-ocr.py docs results --batch-size 32") |
|
|
print("\n4. Test with small sample:") |
|
|
print(" uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle") |
|
|
print("\n5. Original image size (no resize):") |
|
|
print(" uv run lighton-ocr.py docs output --no-resize") |
|
|
print("\n6. Running on HF Jobs:") |
|
|
print(" hf jobs uv run --flavor l4x1 \\") |
|
|
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\") |
|
|
print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\") |
|
|
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \\") |
|
|
print(" input-dataset output-dataset --vocab-size 32k") |
|
|
print("\n" + "=" * 80) |
|
|
print("\nVocabulary Size Options:") |
|
|
print(" 151k - Full vocabulary (all languages)") |
|
|
print(" 32k - European languages (~12% faster)") |
|
|
print(" 16k - European languages (~12% faster)") |
|
|
print("\nFor full help, run: uv run lighton-ocr.py --help") |
|
|
sys.exit(0) |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="Document OCR using LightOnOCR (fast 1B model)", |
|
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
|
epilog=""" |
|
|
Vocabulary Size Options: |
|
|
151k Full vocabulary supporting all languages (default) |
|
|
32k European languages optimized (~12% faster decoding) |
|
|
16k European languages optimized (~12% faster decoding) |
|
|
|
|
|
Examples: |
|
|
# Basic text OCR with full vocabulary |
|
|
uv run lighton-ocr.py my-docs analyzed-docs |
|
|
|
|
|
# Fast processing for European languages |
|
|
uv run lighton-ocr.py papers results --vocab-size 32k |
|
|
|
|
|
# Test with random sampling |
|
|
uv run lighton-ocr.py large-dataset test --max-samples 50 --shuffle |
|
|
|
|
|
# Custom batch size for GPU optimization |
|
|
uv run lighton-ocr.py dataset output --batch-size 32 --gpu-memory-utilization 0.9 |
|
|
""", |
|
|
) |
|
|
|
|
|
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") |
|
|
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") |
|
|
parser.add_argument( |
|
|
"--image-column", |
|
|
default="image", |
|
|
help="Column containing images (default: image)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch-size", |
|
|
type=int, |
|
|
default=16, |
|
|
help="Batch size for processing (default: 16)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--vocab-size", |
|
|
default="151k", |
|
|
choices=list(MODEL_VARIANTS.keys()), |
|
|
help="Vocabulary size variant (default: 151k)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-model-len", |
|
|
type=int, |
|
|
default=8192, |
|
|
help="Maximum model context length (default: 8192)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-tokens", |
|
|
type=int, |
|
|
default=6500, |
|
|
help="Maximum tokens to generate (default: 6500)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--temperature", |
|
|
type=float, |
|
|
default=0.2, |
|
|
help="Sampling temperature (default: 0.2)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--top-p", |
|
|
type=float, |
|
|
default=0.9, |
|
|
help="Top-p sampling parameter (default: 0.9)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--gpu-memory-utilization", |
|
|
type=float, |
|
|
default=0.8, |
|
|
help="GPU memory utilization (default: 0.8)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--target-size", |
|
|
type=int, |
|
|
default=1540, |
|
|
help="Target size for longest image dimension in pixels (default: 1540, matching training)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--no-resize", |
|
|
action="store_true", |
|
|
help="Don't resize images (use original size)", |
|
|
) |
|
|
parser.add_argument("--hf-token", help="Hugging Face API token") |
|
|
parser.add_argument( |
|
|
"--split", default="train", help="Dataset split to use (default: train)" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max-samples", |
|
|
type=int, |
|
|
help="Maximum number of samples to process (for testing)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--private", action="store_true", help="Make output dataset private" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--shuffle", action="store_true", help="Shuffle dataset before processing" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--seed", |
|
|
type=int, |
|
|
default=42, |
|
|
help="Random seed for shuffling (default: 42)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-column", |
|
|
default="markdown", |
|
|
help="Column name for output text (default: markdown)", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
main( |
|
|
input_dataset=args.input_dataset, |
|
|
output_dataset=args.output_dataset, |
|
|
image_column=args.image_column, |
|
|
batch_size=args.batch_size, |
|
|
vocab_size=args.vocab_size, |
|
|
max_model_len=args.max_model_len, |
|
|
max_tokens=args.max_tokens, |
|
|
temperature=args.temperature, |
|
|
top_p=args.top_p, |
|
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
|
target_size=args.target_size, |
|
|
no_resize=args.no_resize, |
|
|
hf_token=args.hf_token, |
|
|
split=args.split, |
|
|
max_samples=args.max_samples, |
|
|
private=args.private, |
|
|
shuffle=args.shuffle, |
|
|
seed=args.seed, |
|
|
output_column=args.output_column, |
|
|
) |
|
|
|