davanstrien HF Staff Claude commited on
Commit
123f376
·
1 Parent(s): dace8e2

Fix temp file handling in DeepSeek-OCR

Browse files

Replace NamedTemporaryFile with simple temp directory approach:
- Create temp dir once at start
- Reuse single temp file path for all images
- Clean up temp dir at end

This matches the official example pattern where model.infer()
expects a real file path string.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

Files changed (1) hide show
  1. deepseek-ocr.py +63 -58
deepseek-ocr.py CHANGED
@@ -40,6 +40,7 @@ import argparse
40
  import json
41
  import logging
42
  import os
 
43
  import sys
44
  import tempfile
45
  from datetime import datetime
@@ -199,39 +200,30 @@ def process_single_image(
199
  base_size: int,
200
  image_size: int,
201
  crop_mode: bool,
 
202
  ) -> str:
203
  """Process a single image through DeepSeek-OCR."""
204
- # model.infer expects a file path, so save to temp file
205
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
206
- try:
207
- # Convert to RGB if needed
208
- if image.mode != "RGB":
209
- image = image.convert("RGB")
210
-
211
- # Save image
212
- image.save(tmp.name, format="PNG")
213
-
214
- # Run inference
215
- result = model.infer(
216
- tokenizer,
217
- prompt=prompt,
218
- image_file=tmp.name,
219
- output_path="", # Don't save intermediate files
220
- base_size=base_size,
221
- image_size=image_size,
222
- crop_mode=crop_mode,
223
- save_results=False,
224
- test_compress=False,
225
- )
226
-
227
- return result if isinstance(result, str) else str(result)
228
 
229
- finally:
230
- # Clean up temp file
231
- try:
232
- os.unlink(tmp.name)
233
- except:
234
- pass
235
 
236
 
237
  def main(
@@ -341,35 +333,48 @@ def main(
341
  logger.info(f"Processing {len(dataset)} images (sequential, no batching)")
342
  logger.info("Note: This may be slower than vLLM-based scripts")
343
 
344
- for i in tqdm(range(len(dataset)), desc="OCR processing"):
345
- try:
346
- image = dataset[i][image_column]
347
-
348
- # Handle different image formats
349
- if isinstance(image, dict) and "bytes" in image:
350
- from io import BytesIO
351
- image = Image.open(BytesIO(image["bytes"]))
352
- elif isinstance(image, str):
353
- image = Image.open(image)
354
- elif not isinstance(image, Image.Image):
355
- raise ValueError(f"Unsupported image type: {type(image)}")
356
-
357
- # Process image
358
- result = process_single_image(
359
- model_obj,
360
- tokenizer,
361
- image,
362
- prompt,
363
- final_base_size,
364
- final_image_size,
365
- final_crop_mode,
366
- )
367
-
368
- all_markdown.append(result)
369
 
370
- except Exception as e:
371
- logger.error(f"Error processing image {i}: {e}")
372
- all_markdown.append("[OCR FAILED]")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
 
374
  # Add markdown column to dataset
375
  logger.info("Adding markdown column to dataset")
 
40
  import json
41
  import logging
42
  import os
43
+ import shutil
44
  import sys
45
  import tempfile
46
  from datetime import datetime
 
200
  base_size: int,
201
  image_size: int,
202
  crop_mode: bool,
203
+ temp_image_path: str,
204
  ) -> str:
205
  """Process a single image through DeepSeek-OCR."""
206
+ # Convert to RGB if needed
207
+ if image.mode != "RGB":
208
+ image = image.convert("RGB")
209
+
210
+ # Save to temp file (model.infer expects a file path)
211
+ image.save(temp_image_path, format="PNG")
212
+
213
+ # Run inference
214
+ result = model.infer(
215
+ tokenizer,
216
+ prompt=prompt,
217
+ image_file=temp_image_path,
218
+ output_path="", # Don't save intermediate files
219
+ base_size=base_size,
220
+ image_size=image_size,
221
+ crop_mode=crop_mode,
222
+ save_results=False,
223
+ test_compress=False,
224
+ )
 
 
 
 
 
225
 
226
+ return result if isinstance(result, str) else str(result)
 
 
 
 
 
227
 
228
 
229
  def main(
 
333
  logger.info(f"Processing {len(dataset)} images (sequential, no batching)")
334
  logger.info("Note: This may be slower than vLLM-based scripts")
335
 
336
+ # Create temp directory for image files
337
+ temp_dir = tempfile.mkdtemp()
338
+ temp_image_path = os.path.join(temp_dir, "temp_image.png")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
 
340
+ try:
341
+ for i in tqdm(range(len(dataset)), desc="OCR processing"):
342
+ try:
343
+ image = dataset[i][image_column]
344
+
345
+ # Handle different image formats
346
+ if isinstance(image, dict) and "bytes" in image:
347
+ from io import BytesIO
348
+ image = Image.open(BytesIO(image["bytes"]))
349
+ elif isinstance(image, str):
350
+ image = Image.open(image)
351
+ elif not isinstance(image, Image.Image):
352
+ raise ValueError(f"Unsupported image type: {type(image)}")
353
+
354
+ # Process image
355
+ result = process_single_image(
356
+ model_obj,
357
+ tokenizer,
358
+ image,
359
+ prompt,
360
+ final_base_size,
361
+ final_image_size,
362
+ final_crop_mode,
363
+ temp_image_path,
364
+ )
365
+
366
+ all_markdown.append(result)
367
+
368
+ except Exception as e:
369
+ logger.error(f"Error processing image {i}: {e}")
370
+ all_markdown.append("[OCR FAILED]")
371
+
372
+ finally:
373
+ # Clean up temp directory
374
+ try:
375
+ shutil.rmtree(temp_dir)
376
+ except:
377
+ pass
378
 
379
  # Add markdown column to dataset
380
  logger.info("Adding markdown column to dataset")