Commit
Β·
2204718
1
Parent(s):
35c7121
Fix dataset card: remove viewer:false, remove speed claim, simplify features
Browse files- dots-ocr.py +1 -10
dots-ocr.py
CHANGED
|
@@ -16,12 +16,10 @@
|
|
| 16 |
Convert document images to markdown using DoTS.ocr with vLLM.
|
| 17 |
|
| 18 |
DoTS.ocr is a compact 1.7B multilingual document parsing model with SOTA performance
|
| 19 |
-
on 100+ languages. This script uses vLLM for efficient batch processing
|
| 20 |
-
than native HuggingFace transformers).
|
| 21 |
|
| 22 |
Features:
|
| 23 |
- π Multilingual support (100+ languages)
|
| 24 |
-
- β‘ Fast processing with vLLM (2-3x speedup)
|
| 25 |
- π Table extraction and formatting
|
| 26 |
- π Formula recognition
|
| 27 |
- π Layout-aware text extraction
|
|
@@ -145,7 +143,6 @@ def create_dataset_card(
|
|
| 145 |
model_name = model.split("/")[-1]
|
| 146 |
|
| 147 |
return f"""---
|
| 148 |
-
viewer: false
|
| 149 |
tags:
|
| 150 |
- ocr
|
| 151 |
- document-processing
|
|
@@ -186,7 +183,6 @@ DoTS.ocr is a compact multilingual document parsing model that excels at:
|
|
| 186 |
- π **Table extraction** - Structured data recognition
|
| 187 |
- π **Formulas** - Mathematical notation preservation
|
| 188 |
- π **Layout-aware** - Reading order and structure preservation
|
| 189 |
-
- β‘ **Fast inference** - 2-3x faster than native HF with vLLM
|
| 190 |
- π― **Compact** - Only 1.7B parameters
|
| 191 |
|
| 192 |
## Dataset Structure
|
|
@@ -231,11 +227,6 @@ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\
|
|
| 231 |
--gpu-memory-utilization {gpu_memory_utilization}
|
| 232 |
```
|
| 233 |
|
| 234 |
-
## Performance
|
| 235 |
-
|
| 236 |
-
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
|
| 237 |
-
- **GPU Configuration**: vLLM with {gpu_memory_utilization:.0%} GPU memory utilization
|
| 238 |
-
|
| 239 |
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
|
| 240 |
"""
|
| 241 |
|
|
|
|
| 16 |
Convert document images to markdown using DoTS.ocr with vLLM.
|
| 17 |
|
| 18 |
DoTS.ocr is a compact 1.7B multilingual document parsing model with SOTA performance
|
| 19 |
+
on 100+ languages. This script uses vLLM for efficient batch processing.
|
|
|
|
| 20 |
|
| 21 |
Features:
|
| 22 |
- π Multilingual support (100+ languages)
|
|
|
|
| 23 |
- π Table extraction and formatting
|
| 24 |
- π Formula recognition
|
| 25 |
- π Layout-aware text extraction
|
|
|
|
| 143 |
model_name = model.split("/")[-1]
|
| 144 |
|
| 145 |
return f"""---
|
|
|
|
| 146 |
tags:
|
| 147 |
- ocr
|
| 148 |
- document-processing
|
|
|
|
| 183 |
- π **Table extraction** - Structured data recognition
|
| 184 |
- π **Formulas** - Mathematical notation preservation
|
| 185 |
- π **Layout-aware** - Reading order and structure preservation
|
|
|
|
| 186 |
- π― **Compact** - Only 1.7B parameters
|
| 187 |
|
| 188 |
## Dataset Structure
|
|
|
|
| 227 |
--gpu-memory-utilization {gpu_memory_utilization}
|
| 228 |
```
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
|
| 231 |
"""
|
| 232 |
|