Commit
·
6042172
1
Parent(s):
a77e763
Update LightOnOCR target resolution to 1540px
Browse filesBased on feedback from LightOn authors (
@staghado
), update default
image resolution from 1288px to 1540px to match training settings.
Changes:
- Default target_size: 1288px → 1540px
- Updated docstrings: trained at 200 DPI (not 300 DPI)
- Updated help text to note this matches training
The model was trained with max resolution of 1540px and 200 DPI,
so using these settings should provide optimal quality.
Reference: https://x.com/staghado/status/1849518069623726119
🤖 Generated with Claude Code
Co-Authored-By: Claude <noreply@anthropic.com>
- lighton-ocr.py +7 -7
lighton-ocr.py
CHANGED
|
@@ -81,11 +81,11 @@ def check_cuda_availability():
|
|
| 81 |
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 82 |
|
| 83 |
|
| 84 |
-
def resize_image_to_target(image: Image.Image, target_size: int =
|
| 85 |
"""
|
| 86 |
Resize image so longest dimension is target_size while maintaining aspect ratio.
|
| 87 |
|
| 88 |
-
LightOnOCR
|
| 89 |
"""
|
| 90 |
width, height = image.size
|
| 91 |
|
|
@@ -107,12 +107,12 @@ def resize_image_to_target(image: Image.Image, target_size: int = 1288) -> Image
|
|
| 107 |
def make_ocr_message(
|
| 108 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 109 |
resize: bool = True,
|
| 110 |
-
target_size: int =
|
| 111 |
) -> List[Dict]:
|
| 112 |
"""
|
| 113 |
Create chat message for OCR processing.
|
| 114 |
|
| 115 |
-
LightOnOCR
|
| 116 |
"""
|
| 117 |
# Convert to PIL Image if needed
|
| 118 |
if isinstance(image, Image.Image):
|
|
@@ -280,7 +280,7 @@ def main(
|
|
| 280 |
temperature: float = 0.2,
|
| 281 |
top_p: float = 0.9,
|
| 282 |
gpu_memory_utilization: float = 0.8,
|
| 283 |
-
target_size: int =
|
| 284 |
no_resize: bool = False,
|
| 285 |
hf_token: str = None,
|
| 286 |
split: str = "train",
|
|
@@ -577,8 +577,8 @@ Examples:
|
|
| 577 |
parser.add_argument(
|
| 578 |
"--target-size",
|
| 579 |
type=int,
|
| 580 |
-
default=
|
| 581 |
-
help="Target size for longest image dimension in pixels (default:
|
| 582 |
)
|
| 583 |
parser.add_argument(
|
| 584 |
"--no-resize",
|
|
|
|
| 81 |
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 82 |
|
| 83 |
|
| 84 |
+
def resize_image_to_target(image: Image.Image, target_size: int = 1540) -> Image.Image:
|
| 85 |
"""
|
| 86 |
Resize image so longest dimension is target_size while maintaining aspect ratio.
|
| 87 |
|
| 88 |
+
LightOnOCR was trained with images at 1540px max resolution and 200 DPI.
|
| 89 |
"""
|
| 90 |
width, height = image.size
|
| 91 |
|
|
|
|
| 107 |
def make_ocr_message(
|
| 108 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 109 |
resize: bool = True,
|
| 110 |
+
target_size: int = 1540,
|
| 111 |
) -> List[Dict]:
|
| 112 |
"""
|
| 113 |
Create chat message for OCR processing.
|
| 114 |
|
| 115 |
+
LightOnOCR was trained with 1540px max resolution at 200 DPI for optimal results.
|
| 116 |
"""
|
| 117 |
# Convert to PIL Image if needed
|
| 118 |
if isinstance(image, Image.Image):
|
|
|
|
| 280 |
temperature: float = 0.2,
|
| 281 |
top_p: float = 0.9,
|
| 282 |
gpu_memory_utilization: float = 0.8,
|
| 283 |
+
target_size: int = 1540,
|
| 284 |
no_resize: bool = False,
|
| 285 |
hf_token: str = None,
|
| 286 |
split: str = "train",
|
|
|
|
| 577 |
parser.add_argument(
|
| 578 |
"--target-size",
|
| 579 |
type=int,
|
| 580 |
+
default=1540,
|
| 581 |
+
help="Target size for longest image dimension in pixels (default: 1540, matching training)",
|
| 582 |
)
|
| 583 |
parser.add_argument(
|
| 584 |
"--no-resize",
|