Commit
·
89f58ba
1
Parent(s):
cdbefb7
Add Nanonets OCR script with vLLM support
Browse files- UV script for document OCR using Nanonets-OCR-s model
- Features: LaTeX equations, tables, document structure
- Supports batch processing with vLLM
- Includes HF Jobs examples for running on cloud
- Added proper CUDA checks and error handling
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
viewer: false
|
| 3 |
+
tags: [uv-script, ocr, vision-language-model, document-processing]
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# UV Scripts - OCR Collection
|
| 7 |
+
|
| 8 |
+
This repository contains UV scripts for OCR (Optical Character Recognition) tasks using various models.
|
| 9 |
+
|
| 10 |
+
## 🚧 Early Testing Version
|
| 11 |
+
|
| 12 |
+
This is an early version for testing. Documentation and examples will be expanded based on feedback.
|
| 13 |
+
|
| 14 |
+
## Available Scripts
|
| 15 |
+
|
| 16 |
+
### 1. Nanonets OCR (`nanonets-ocr.py`)
|
| 17 |
+
|
| 18 |
+
Converts document images to structured markdown using the Nanonets-OCR-s model.
|
| 19 |
+
|
| 20 |
+
**Features:**
|
| 21 |
+
- LaTeX equation recognition
|
| 22 |
+
- Table extraction and formatting
|
| 23 |
+
- Document structure preservation
|
| 24 |
+
- Batch processing with vLLM
|
| 25 |
+
|
| 26 |
+
**Requirements:**
|
| 27 |
+
- GPU with CUDA support
|
| 28 |
+
- Python 3.11+
|
| 29 |
+
|
| 30 |
+
## Quick Test
|
| 31 |
+
|
| 32 |
+
To test the script with a sample dataset:
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
# Test with 5 samples from a document dataset
|
| 36 |
+
uv run nanonets-ocr.py \
|
| 37 |
+
davanstrien/scientific-papers-small \
|
| 38 |
+
my-test-ocr-output \
|
| 39 |
+
--max-samples 5
|
| 40 |
+
|
| 41 |
+
# Or if you have a specific dataset with images
|
| 42 |
+
uv run nanonets-ocr.py \
|
| 43 |
+
your-username/your-image-dataset \
|
| 44 |
+
your-username/test-ocr-results \
|
| 45 |
+
--image-column image \
|
| 46 |
+
--max-samples 10
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Example Output
|
| 50 |
+
|
| 51 |
+
The script adds a `markdown` column to your dataset containing the extracted text in markdown format, preserving:
|
| 52 |
+
- Headers and document structure
|
| 53 |
+
- Tables with proper formatting
|
| 54 |
+
- Mathematical equations in LaTeX
|
| 55 |
+
- Lists and other formatting
|
| 56 |
+
|
| 57 |
+
## GPU Memory
|
| 58 |
+
|
| 59 |
+
If you encounter GPU memory issues, adjust the batch size and memory utilization:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
uv run nanonets-ocr.py input output \
|
| 63 |
+
--batch-size 4 \
|
| 64 |
+
--gpu-memory-utilization 0.5
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## Running on HuggingFace Jobs
|
| 68 |
+
|
| 69 |
+
Run this script on HF infrastructure without needing your own GPU!
|
| 70 |
+
|
| 71 |
+
### Command Line
|
| 72 |
+
|
| 73 |
+
```bash
|
| 74 |
+
# Basic usage
|
| 75 |
+
hf jobs uv run --flavor l4x1 \
|
| 76 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 77 |
+
input-dataset-id output-dataset-id
|
| 78 |
+
|
| 79 |
+
# Full example with options
|
| 80 |
+
hf jobs uv run --flavor l4x1 \
|
| 81 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 82 |
+
NationalLibraryOfScotland/Scottish-School-Exam-Papers \
|
| 83 |
+
your-username/scottish-exams-ocr \
|
| 84 |
+
--image-column image \
|
| 85 |
+
--max-model-len 16384 \
|
| 86 |
+
--batch-size 16
|
| 87 |
+
|
| 88 |
+
# With HF token for private repos
|
| 89 |
+
hf jobs uv run --flavor l4x1 --secret HF_TOKEN=$HF_TOKEN \
|
| 90 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 91 |
+
input-dataset output-dataset \
|
| 92 |
+
--private
|
| 93 |
+
|
| 94 |
+
# With vLLM Docker image for optimized performance
|
| 95 |
+
hf jobs uv run \
|
| 96 |
+
--flavor l4x1 \
|
| 97 |
+
--image vllm/vllm-openai:latest \
|
| 98 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 99 |
+
input-dataset output-dataset \
|
| 100 |
+
--batch-size 32
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Python API
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from huggingface_hub import run_uv_job
|
| 107 |
+
|
| 108 |
+
# Run the OCR script
|
| 109 |
+
job = run_uv_job(
|
| 110 |
+
"https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py",
|
| 111 |
+
args=[
|
| 112 |
+
"input-dataset-id",
|
| 113 |
+
"output-dataset-id",
|
| 114 |
+
"--image-column", "image",
|
| 115 |
+
"--max-model-len", "16384"
|
| 116 |
+
],
|
| 117 |
+
flavor="l4x1",
|
| 118 |
+
secrets={"HF_TOKEN": "your-token"} # if needed
|
| 119 |
+
)
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
### Recommended GPU Flavors
|
| 123 |
+
|
| 124 |
+
- **`l4x1`** (24GB) - Recommended for most OCR tasks
|
| 125 |
+
- **`t4-small`** (16GB) - For smaller batches or lower resolution
|
| 126 |
+
- **`a10g-small`** (24GB) - Alternative to L4
|
| 127 |
+
- **`l40sx1`** (48GB) - For very large batches
|
| 128 |
+
- **`a100-large`** (80GB) - Maximum performance
|
| 129 |
+
|
| 130 |
+
## Coming Soon
|
| 131 |
+
|
| 132 |
+
- Additional OCR models (RolmOCR, OlmOCR)
|
| 133 |
+
- Performance benchmarks
|
| 134 |
+
- More examples and use cases
|