Commit
·
ea32fa8
1
Parent(s):
a8ad6e1
Critical quality fixes: temperature 0.1 and image resizing to 1288px
Browse filesTwo critical changes to match official olmOCR implementation:
1. **Temperature 0.1 (was 0.0)**
- Matches olmOCR transformers example
- Their pipeline also starts at 0.1 (not 0.0)
- Temperature 0.0 with sampling can cause quality issues
2. **Image resizing to 1288px on longest edge**
- Official pipeline default: target_longest_image_dim=1288
- Model was trained with images at this resolution
- Ensures consistent token counts and detail level
- Uses LANCZOS resampling for quality
These are the two highest-impact fixes identified by code review comparing
our implementation to official olmOCR pipeline and transformers example.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- olmocr2-vllm.py +23 -6
olmocr2-vllm.py
CHANGED
|
@@ -117,8 +117,15 @@ def parse_yaml_frontmatter(text: str) -> tuple[dict, str]:
|
|
| 117 |
def make_ocr_message(
|
| 118 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 119 |
prompt: str = OLMOCR_PROMPT,
|
|
|
|
| 120 |
) -> List[Dict]:
|
| 121 |
-
"""Create chat message for olmOCR processing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
# Convert to PIL Image if needed
|
| 123 |
if isinstance(image, Image.Image):
|
| 124 |
pil_img = image
|
|
@@ -129,6 +136,16 @@ def make_ocr_message(
|
|
| 129 |
else:
|
| 130 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
# Convert to base64 data URI
|
| 133 |
buf = io.BytesIO()
|
| 134 |
pil_img.save(buf, format="PNG")
|
|
@@ -265,7 +282,7 @@ def main(
|
|
| 265 |
model: str = "allenai/olmOCR-2-7B-1025-FP8",
|
| 266 |
max_model_len: int = 16384,
|
| 267 |
max_tokens: int = 8192,
|
| 268 |
-
temperature: float = 0.
|
| 269 |
gpu_memory_utilization: float = 0.8,
|
| 270 |
guided_decoding: bool = False,
|
| 271 |
hf_token: str = None,
|
|
@@ -287,7 +304,7 @@ def main(
|
|
| 287 |
model: HuggingFace model ID for olmOCR
|
| 288 |
max_model_len: Maximum context length
|
| 289 |
max_tokens: Maximum tokens to generate per image
|
| 290 |
-
temperature: Sampling temperature (0.
|
| 291 |
gpu_memory_utilization: Fraction of GPU memory to use
|
| 292 |
guided_decoding: Enable guided decoding with regex for YAML front matter
|
| 293 |
hf_token: HuggingFace token for authentication
|
|
@@ -340,7 +357,7 @@ def main(
|
|
| 340 |
limit_mm_per_prompt={"image": 1},
|
| 341 |
)
|
| 342 |
|
| 343 |
-
# Sampling parameters - olmOCR uses temperature 0.
|
| 344 |
sampling_params_kwargs = {
|
| 345 |
"temperature": temperature,
|
| 346 |
"max_tokens": max_tokens,
|
|
@@ -544,8 +561,8 @@ Examples:
|
|
| 544 |
parser.add_argument(
|
| 545 |
"--temperature",
|
| 546 |
type=float,
|
| 547 |
-
default=0.
|
| 548 |
-
help="Sampling temperature (default: 0.
|
| 549 |
)
|
| 550 |
parser.add_argument(
|
| 551 |
"--gpu-memory-utilization",
|
|
|
|
| 117 |
def make_ocr_message(
|
| 118 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 119 |
prompt: str = OLMOCR_PROMPT,
|
| 120 |
+
target_longest_dim: int = 1288,
|
| 121 |
) -> List[Dict]:
|
| 122 |
+
"""Create chat message for olmOCR processing.
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
image: Input image (PIL Image, dict with bytes, or path)
|
| 126 |
+
prompt: OCR prompt text
|
| 127 |
+
target_longest_dim: Target size for longest image dimension (default 1288, matching olmOCR)
|
| 128 |
+
"""
|
| 129 |
# Convert to PIL Image if needed
|
| 130 |
if isinstance(image, Image.Image):
|
| 131 |
pil_img = image
|
|
|
|
| 136 |
else:
|
| 137 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 138 |
|
| 139 |
+
# Resize image to target dimension (matching olmOCR pipeline default of 1288px)
|
| 140 |
+
width, height = pil_img.size
|
| 141 |
+
longest_side = max(width, height)
|
| 142 |
+
if longest_side != target_longest_dim:
|
| 143 |
+
scale = target_longest_dim / longest_side
|
| 144 |
+
new_width = int(width * scale)
|
| 145 |
+
new_height = int(height * scale)
|
| 146 |
+
pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 147 |
+
logger.debug(f"Resized image from {width}x{height} to {new_width}x{new_height}")
|
| 148 |
+
|
| 149 |
# Convert to base64 data URI
|
| 150 |
buf = io.BytesIO()
|
| 151 |
pil_img.save(buf, format="PNG")
|
|
|
|
| 282 |
model: str = "allenai/olmOCR-2-7B-1025-FP8",
|
| 283 |
max_model_len: int = 16384,
|
| 284 |
max_tokens: int = 8192,
|
| 285 |
+
temperature: float = 0.1,
|
| 286 |
gpu_memory_utilization: float = 0.8,
|
| 287 |
guided_decoding: bool = False,
|
| 288 |
hf_token: str = None,
|
|
|
|
| 304 |
model: HuggingFace model ID for olmOCR
|
| 305 |
max_model_len: Maximum context length
|
| 306 |
max_tokens: Maximum tokens to generate per image
|
| 307 |
+
temperature: Sampling temperature (0.1 default, matches olmOCR)
|
| 308 |
gpu_memory_utilization: Fraction of GPU memory to use
|
| 309 |
guided_decoding: Enable guided decoding with regex for YAML front matter
|
| 310 |
hf_token: HuggingFace token for authentication
|
|
|
|
| 357 |
limit_mm_per_prompt={"image": 1},
|
| 358 |
)
|
| 359 |
|
| 360 |
+
# Sampling parameters - olmOCR uses temperature 0.1 (transformers example)
|
| 361 |
sampling_params_kwargs = {
|
| 362 |
"temperature": temperature,
|
| 363 |
"max_tokens": max_tokens,
|
|
|
|
| 561 |
parser.add_argument(
|
| 562 |
"--temperature",
|
| 563 |
type=float,
|
| 564 |
+
default=0.1,
|
| 565 |
+
help="Sampling temperature (default: 0.1, matches olmOCR transformers example)",
|
| 566 |
)
|
| 567 |
parser.add_argument(
|
| 568 |
"--gpu-memory-utilization",
|