--- viewer: false tags: [uv-script, ocr, vision-language-model, document-processing] --- # OCR UV Scripts > Part of [uv-scripts](https://huggingface.co/uv-scripts) - ready-to-run ML tools powered by UV Ready-to-run OCR scripts that work with `uv run` - no setup required! ## 🚀 Quick Start with HuggingFace Jobs Run OCR on any dataset without needing your own GPU: ```bash # Quick test with 10 samples hf jobs uv run --flavor l4x1 \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ your-input-dataset your-output-dataset \ --max-samples 10 ``` That's it! The script will: - ✅ Process first 10 images from your dataset - ✅ Add OCR results as a new `markdown` column - ✅ Push the results to a new dataset - 📊 View results at: `https://huggingface.co/datasets/[your-output-dataset]` ## 📋 Available Scripts ### LightOnOCR (`lighton-ocr.py`) ⚡ Good one to test first since it's small and fast! Fast and compact OCR using [lightonai/LightOnOCR-1B-1025](https://huggingface.co/lightonai/LightOnOCR-1B-1025): - ⚡ **Fastest**: 5.71 pages/sec on H100, ~6.25 images/sec on A100 with batch_size=4096 - 🎯 **Compact**: Only 1B parameters - quick to download and initialize - 🌍 **Multilingual**: 3 vocabulary sizes for different use cases - 📐 **LaTeX formulas**: Mathematical notation in LaTeX format - 📊 **Table extraction**: Markdown table format - 📝 **Document structure**: Preserves hierarchy and layout - 🚀 **Production-ready**: 76.1% benchmark score, used in production **Vocabulary sizes:** - `151k`: Full vocabulary, all languages (default) - `32k`: European languages, ~12% faster decoding - `16k`: European languages, ~12% faster decoding **Quick start:** ```bash # Test on 100 samples with English text (32k vocab is fastest for European languages) hf jobs uv run --flavor l4x1 \ -s HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \ your-input-dataset your-output-dataset \ --vocab-size 32k \ --batch-size 32 \ --max-samples 100 # Full production run on A100 (can handle huge batches!) hf jobs uv run --flavor a100-large \ -s HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/lighton-ocr.py \ your-input-dataset your-output-dataset \ --vocab-size 32k \ --batch-size 4096 \ --temperature 0.0 ``` ### DeepSeek-OCR (`deepseek-ocr-vllm.py`) ⭐ NEW Advanced document OCR using [deepseek-ai/DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR) with visual-text compression: - 📐 **LaTeX equations** - Mathematical formulas in LaTeX format - 📊 **Tables** - Extracted as HTML/markdown - 📝 **Document structure** - Headers, lists, formatting preserved - 🖼️ **Image grounding** - Spatial layout with bounding boxes - 🔍 **Complex layouts** - Multi-column and hierarchical structures - 🌍 **Multilingual** - Multiple language support - 🎚️ **Resolution modes** - 5 presets for speed/quality trade-offs - 💬 **Prompt modes** - 5 presets for different OCR tasks - ⚡ **Fast batch processing** - vLLM acceleration **Resolution Modes:** - `tiny` (512×512): Fast, 64 vision tokens - `small` (640×640): Balanced, 100 vision tokens - `base` (1024×1024): High quality, 256 vision tokens - `large` (1280×1280): Maximum quality, 400 vision tokens - `gundam` (dynamic): Adaptive multi-tile (default) **Prompt Modes:** - `document`: Convert to markdown with grounding (default) - `image`: OCR any image with grounding - `free`: Fast OCR without layout - `figure`: Parse figures from documents - `describe`: Detailed image descriptions ### RolmOCR (`rolm-ocr.py`) Fast general-purpose OCR using [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR) based on Qwen2.5-VL-7B: - 🚀 **Fast extraction** - Optimized for speed and efficiency - 📄 **Plain text output** - Clean, natural text representation - 💪 **General-purpose** - Works well on various document types - 🔥 **Large context** - Handles up to 16K tokens - ⚡ **Batch optimized** - Efficient processing with vLLM ### Nanonets OCR (`nanonets-ocr.py`) State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) that handles: - 📐 **LaTeX equations** - Mathematical formulas preserved - 📊 **Tables** - Extracted as HTML format - 📝 **Document structure** - Headers, lists, formatting maintained - 🖼️ **Images** - Captions and descriptions included - ☑️ **Forms** - Checkboxes rendered as ☐/☑ ### Nanonets OCR2 (`nanonets-ocr2.py`) Next-generation Nanonets OCR using [nanonets/Nanonets-OCR2-3B](https://huggingface.co/nanonets/Nanonets-OCR2-3B) with improved accuracy: - 🎯 **Enhanced quality** - 3.75B parameters for superior OCR accuracy - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format - 📊 **Advanced tables** - Improved HTML table extraction - 📝 **Document structure** - Headers, lists, formatting maintained - 🖼️ **Smart image captions** - Intelligent descriptions and captions - ☑️ **Forms** - Checkboxes rendered as ☐/☑ - 🌍 **Multilingual** - Enhanced language support - 🔧 **Based on Qwen2.5-VL** - Built on state-of-the-art vision-language model ### SmolDocling (`smoldocling-ocr.py`) Ultra-compact document understanding using [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) with only 256M parameters: - 🏷️ **DocTags format** - Efficient XML-like representation - 💻 **Code blocks** - Preserves indentation and syntax - 🔢 **Formulas** - Mathematical expressions with layout - 📊 **Tables & charts** - Structured data extraction - 📐 **Layout preservation** - Bounding boxes and spatial info - ⚡ **Ultra-fast** - Tiny model size for quick inference ### NuMarkdown (`numarkdown-ocr.py`) Advanced reasoning-based OCR using [numind/NuMarkdown-8B-Thinking](https://huggingface.co/numind/NuMarkdown-8B-Thinking) that analyzes documents before converting to markdown: - 🧠 **Reasoning Process** - Thinks through document layout before generation - 📊 **Complex Tables** - Superior table extraction and formatting - 📐 **Mathematical Formulas** - Accurate LaTeX/math notation preservation - 🔍 **Multi-column Layouts** - Handles complex document structures - ✨ **Thinking Traces** - Optional inclusion of reasoning process with `--include-thinking` ### DoTS.ocr (`dots-ocr.py`) Compact multilingual OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) with only 1.7B parameters: - 🌍 **100+ Languages** - Extensive multilingual support - 📝 **Simple OCR** - Clean text extraction (default mode) - 📊 **Layout Analysis** - Optional structured output with bboxes and categories - 📐 **Formula recognition** - LaTeX format support - 🎯 **Compact** - Only 1.7B parameters, efficient on smaller GPUs - 🔀 **Flexible prompts** - Switch between OCR, layout-all, and layout-only modes ### olmOCR2 (`olmocr2-vllm.py`) High-quality document OCR using [allenai/olmOCR-2-7B-1025-FP8](https://huggingface.co/allenai/olmOCR-2-7B-1025-FP8) optimized with GRPO reinforcement learning: - 🎯 **High accuracy** - 82.4 ± 1.1 on olmOCR-Bench (84.9% on math) - 📐 **LaTeX equations** - Mathematical formulas in LaTeX format - 📊 **Table extraction** - Structured table recognition - 📑 **Multi-column layouts** - Complex document structures - 🗜️ **FP8 quantized** - Efficient 8B model for faster inference - 📜 **Degraded scans** - Works well on old/historical documents - 📝 **Long text extraction** - Headers, footers, and full document content - 🧩 **YAML metadata** - Structured front matter (language, rotation, content type) - 🚀 **Based on Qwen2.5-VL-7B** - Fine-tuned with reinforcement learning ## 🆕 New Features ### Multi-Model Comparison Support All scripts now include `inference_info` tracking for comparing multiple OCR models: ```bash # First model uv run rolm-ocr.py my-dataset my-dataset --max-samples 100 # Second model (appends to same dataset) uv run nanonets-ocr.py my-dataset my-dataset --max-samples 100 # View all models used python -c "import json; from datasets import load_dataset; ds = load_dataset('my-dataset'); print(json.loads(ds[0]['inference_info']))" ``` ### Random Sampling Get representative samples with the new `--shuffle` flag: ```bash # Random 50 samples instead of first 50 uv run rolm-ocr.py ordered-dataset output --max-samples 50 --shuffle # Reproducible random sampling uv run nanonets-ocr.py dataset output --max-samples 100 --shuffle --seed 42 ``` ### Automatic Dataset Cards Every OCR run now generates comprehensive dataset documentation including: - Model configuration and parameters - Processing statistics - Column descriptions - Reproduction instructions ## 💻 Usage Examples ### Run on HuggingFace Jobs (Recommended) No GPU? No problem! Run on HF infrastructure: ```bash # DeepSeek-OCR - Real-world example (National Library of Scotland handbooks) hf jobs uv run --flavor a100-large \ -s HF_TOKEN \ -e UV_TORCH_BACKEND=auto \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \ NationalLibraryOfScotland/Britain-and-UK-Handbooks-Dataset \ davanstrien/handbooks-deep-ocr \ --max-samples 100 \ --shuffle \ --resolution-mode large # DeepSeek-OCR - Fast testing with tiny mode hf jobs uv run --flavor l4x1 \ -s HF_TOKEN \ -e UV_TORCH_BACKEND=auto \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \ your-input-dataset your-output-dataset \ --max-samples 10 \ --resolution-mode tiny # DeepSeek-OCR - Parse figures from scientific papers hf jobs uv run --flavor a100-large \ -s HF_TOKEN \ -e UV_TORCH_BACKEND=auto \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \ scientific-papers figures-extracted \ --prompt-mode figure # Basic OCR job with Nanonets hf jobs uv run --flavor l4x1 \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ your-input-dataset your-output-dataset # DoTS.ocr - Multilingual OCR with compact 1.7B model hf jobs uv run --flavor a100-large \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \ davanstrien/ufo-ColPali \ your-username/ufo-ocr \ --batch-size 256 \ --max-samples 1000 \ --shuffle # Real example with UFO dataset 🛸 hf jobs uv run \ --flavor a10g-large \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ davanstrien/ufo-ColPali \ your-username/ufo-ocr \ --image-column image \ --max-model-len 16384 \ --batch-size 128 # Nanonets OCR2 - Next-gen quality with 3B model hf jobs uv run \ --flavor l4x1 \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr2.py \ your-input-dataset \ your-output-dataset \ --batch-size 16 # NuMarkdown with reasoning traces for complex documents hf jobs uv run \ --flavor l4x4 \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/numarkdown-ocr.py \ your-input-dataset your-output-dataset \ --max-samples 50 \ --include-thinking \ --shuffle # olmOCR2 - High-quality OCR with YAML metadata hf jobs uv run \ --flavor a100-large \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/olmocr2-vllm.py \ your-input-dataset your-output-dataset \ --batch-size 16 \ --max-samples 100 # Private dataset with custom settings hf jobs uv run --flavor l40sx1 \ --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ private-input private-output \ --private \ --batch-size 32 ``` ### Python API ```python from huggingface_hub import run_uv_job job = run_uv_job( "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py", args=["input-dataset", "output-dataset", "--batch-size", "16"], flavor="l4x1" ) ``` ### Run Locally (Requires GPU) ```bash # Clone and run git clone https://huggingface.co/datasets/uv-scripts/ocr cd ocr uv run nanonets-ocr.py input-dataset output-dataset # Or run directly from URL uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ input-dataset output-dataset # RolmOCR for fast text extraction uv run rolm-ocr.py documents extracted-text uv run rolm-ocr.py images texts --shuffle --max-samples 100 # Random sample # Nanonets OCR2 for highest quality uv run nanonets-ocr2.py documents ocr-results ``` ## 📁 Works With Any HuggingFace dataset containing images - documents, forms, receipts, books, handwriting. ## 🎛️ Configuration Options ### Common Options (All Scripts) | Option | Default | Description | | -------------------------- | ------- | ----------------------------- | | `--image-column` | `image` | Column containing images | | `--batch-size` | `32`/`16`* | Images processed together | | `--max-model-len` | `8192`/`16384`** | Max context length | | `--max-tokens` | `4096`/`8192`** | Max output tokens | | `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) | | `--split` | `train` | Dataset split to process | | `--max-samples` | None | Limit samples (for testing) | | `--private` | False | Make output dataset private | | `--shuffle` | False | Shuffle dataset before processing | | `--seed` | `42` | Random seed for shuffling | *RolmOCR and DoTS use batch size 16 **RolmOCR uses 16384/8192 ### Script-Specific Options **DeepSeek-OCR**: - `--resolution-mode`: Quality level - `tiny`, `small`, `base`, `large`, or `gundam` (default) - `--prompt-mode`: Task type - `document` (default), `image`, `free`, `figure`, or `describe` - `--prompt`: Custom OCR prompt (overrides prompt-mode) - `--base-size`, `--image-size`, `--crop-mode`: Override resolution mode manually - ⚠️ **Important for HF Jobs**: Add `-e UV_TORCH_BACKEND=auto` for proper PyTorch installation **RolmOCR**: - Output column is auto-generated from model name (e.g., `rolmocr_text`) - Use `--output-column` to override the default name **DoTS.ocr**: - `--prompt-mode`: Choose `ocr` (default), `layout-all`, or `layout-only` - `--custom-prompt`: Override with custom prompt text - `--output-column`: Output column name (default: `markdown`) 💡 **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 256` on A100)