# /// script # requires-python = ">=3.11" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "pillow", # "torch", # "torchvision", # "transformers==4.46.3", # "tokenizers==0.20.3", # "tqdm", # "addict", # "matplotlib", # "einops", # "easydict", # ] # # /// """ Convert document images to markdown using DeepSeek-OCR with Transformers. This script processes images through the DeepSeek-OCR model to extract text and structure as markdown, using the official Transformers API. Features: - Multiple resolution modes (Tiny/Small/Base/Large/Gundam) - LaTeX equation recognition - Table extraction and formatting - Document structure preservation - Image grounding and descriptions - Multilingual support Note: This script processes images sequentially (no batching) using the official transformers API. It's slower than vLLM-based scripts but uses the well-supported official implementation. """ import argparse import json import logging import os import shutil import sys from datetime import datetime from pathlib import Path from typing import Optional import torch from datasets import load_dataset from huggingface_hub import DatasetCard, login from PIL import Image from tqdm.auto import tqdm from transformers import AutoModel, AutoTokenizer logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Resolution mode presets RESOLUTION_MODES = { "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, "small": {"base_size": 640, "image_size": 640, "crop_mode": False}, "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True}, # Dynamic resolution } def check_cuda_availability(): """Check if CUDA is available and exit if not.""" if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("Please run on a machine with a CUDA-capable GPU.") sys.exit(1) else: logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}") def create_dataset_card( source_dataset: str, model: str, num_samples: int, processing_time: str, resolution_mode: str, base_size: int, image_size: int, crop_mode: bool, image_column: str = "image", split: str = "train", ) -> str: """Create a dataset card documenting the OCR process.""" model_name = model.split("/")[-1] return f"""--- tags: - ocr - document-processing - deepseek - deepseek-ocr - markdown - uv-script - generated --- # Document OCR using {model_name} This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR. ## Processing Details - **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) - **Model**: [{model}](https://huggingface.co/{model}) - **Number of Samples**: {num_samples:,} - **Processing Time**: {processing_time} - **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")} ### Configuration - **Image Column**: `{image_column}` - **Output Column**: `markdown` - **Dataset Split**: `{split}` - **Resolution Mode**: {resolution_mode} - **Base Size**: {base_size} - **Image Size**: {image_size} - **Crop Mode**: {crop_mode} ## Model Information DeepSeek-OCR is a state-of-the-art document OCR model that excels at: - 📐 **LaTeX equations** - Mathematical formulas preserved in LaTeX format - 📊 **Tables** - Extracted and formatted as HTML/markdown - 📝 **Document structure** - Headers, lists, and formatting maintained - 🖼️ **Image grounding** - Spatial layout and bounding box information - 🔍 **Complex layouts** - Multi-column and hierarchical structures - 🌍 **Multilingual** - Supports multiple languages ### Resolution Modes - **Tiny** (512×512): Fast processing, 64 vision tokens - **Small** (640×640): Balanced speed/quality, 100 vision tokens - **Base** (1024×1024): High quality, 256 vision tokens - **Large** (1280×1280): Maximum quality, 400 vision tokens - **Gundam** (dynamic): Adaptive multi-tile processing for large documents ## Dataset Structure The dataset contains all original columns plus: - `markdown`: The extracted text in markdown format with preserved structure - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}") # Access the markdown text for example in dataset: print(example["markdown"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\ {source_dataset} \\ \\ --resolution-mode {resolution_mode} \\ --image-column {image_column} ``` ## Performance - **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second - **Processing Method**: Sequential (Transformers API, no batching) Note: This uses the official Transformers implementation. For faster batch processing, consider using the vLLM version once DeepSeek-OCR is officially supported by vLLM. Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts) """ def process_single_image( model, tokenizer, image: Image.Image, prompt: str, base_size: int, image_size: int, crop_mode: bool, temp_image_path: str, temp_output_dir: str, ) -> str: """Process a single image through DeepSeek-OCR.""" # Convert to RGB if needed if image.mode != "RGB": image = image.convert("RGB") # Save to temp file (model.infer expects a file path) image.save(temp_image_path, format="PNG") # Run inference result = model.infer( tokenizer, prompt=prompt, image_file=temp_image_path, output_path=temp_output_dir, # Need real directory path base_size=base_size, image_size=image_size, crop_mode=crop_mode, save_results=False, test_compress=False, ) return result if isinstance(result, str) else str(result) def main( input_dataset: str, output_dataset: str, image_column: str = "image", model: str = "deepseek-ai/DeepSeek-OCR", resolution_mode: str = "gundam", base_size: Optional[int] = None, image_size: Optional[int] = None, crop_mode: Optional[bool] = None, prompt: str = "\n<|grounding|>Convert the document to markdown.", hf_token: str = None, split: str = "train", max_samples: int = None, private: bool = False, shuffle: bool = False, seed: int = 42, ): """Process images from HF dataset through DeepSeek-OCR model.""" # Check CUDA availability first check_cuda_availability() # Track processing start time start_time = datetime.now() # Enable HF_TRANSFER for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # Login to HF if token provided HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") if HF_TOKEN: login(token=HF_TOKEN) # Determine resolution settings if resolution_mode in RESOLUTION_MODES: mode_config = RESOLUTION_MODES[resolution_mode] final_base_size = base_size if base_size is not None else mode_config["base_size"] final_image_size = image_size if image_size is not None else mode_config["image_size"] final_crop_mode = crop_mode if crop_mode is not None else mode_config["crop_mode"] logger.info(f"Using resolution mode: {resolution_mode}") else: # Custom mode - require all parameters if base_size is None or image_size is None or crop_mode is None: raise ValueError( f"Invalid resolution mode '{resolution_mode}'. " f"Use one of {list(RESOLUTION_MODES.keys())} or specify " f"--base-size, --image-size, and --crop-mode manually." ) final_base_size = base_size final_image_size = image_size final_crop_mode = crop_mode resolution_mode = "custom" logger.info( f"Resolution: base_size={final_base_size}, " f"image_size={final_image_size}, crop_mode={final_crop_mode}" ) # Load dataset logger.info(f"Loading dataset: {input_dataset}") dataset = load_dataset(input_dataset, split=split) # Validate image column if image_column not in dataset.column_names: raise ValueError( f"Column '{image_column}' not found. Available: {dataset.column_names}" ) # Shuffle if requested if shuffle: logger.info(f"Shuffling dataset with seed {seed}") dataset = dataset.shuffle(seed=seed) # Limit samples if requested if max_samples: dataset = dataset.select(range(min(max_samples, len(dataset)))) logger.info(f"Limited to {len(dataset)} samples") # Initialize model logger.info(f"Loading model: {model}") tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True) try: model_obj = AutoModel.from_pretrained( model, _attn_implementation="flash_attention_2", trust_remote_code=True, use_safetensors=True, ) except Exception as e: logger.warning(f"Failed to load with flash_attention_2: {e}") logger.info("Falling back to standard attention...") model_obj = AutoModel.from_pretrained( model, trust_remote_code=True, use_safetensors=True, ) model_obj = model_obj.eval().cuda().to(torch.bfloat16) logger.info("Model loaded successfully") # Process images sequentially all_markdown = [] logger.info(f"Processing {len(dataset)} images (sequential, no batching)") logger.info("Note: This may be slower than vLLM-based scripts") # Create temp directories for image files and output (simple local dirs) temp_dir = Path("temp_images") temp_dir.mkdir(exist_ok=True) temp_image_path = str(temp_dir / "temp_image.png") temp_output_dir = Path("temp_output") temp_output_dir.mkdir(exist_ok=True) try: for i in tqdm(range(len(dataset)), desc="OCR processing"): try: image = dataset[i][image_column] # Handle different image formats if isinstance(image, dict) and "bytes" in image: from io import BytesIO image = Image.open(BytesIO(image["bytes"])) elif isinstance(image, str): image = Image.open(image) elif not isinstance(image, Image.Image): raise ValueError(f"Unsupported image type: {type(image)}") # Process image result = process_single_image( model_obj, tokenizer, image, prompt, final_base_size, final_image_size, final_crop_mode, temp_image_path, str(temp_output_dir), ) all_markdown.append(result) except Exception as e: logger.error(f"Error processing image {i}: {e}") all_markdown.append("[OCR FAILED]") finally: # Clean up temp directories try: shutil.rmtree(temp_dir) shutil.rmtree(temp_output_dir) except: pass # Add markdown column to dataset logger.info("Adding markdown column to dataset") dataset = dataset.add_column("markdown", all_markdown) # Handle inference_info tracking logger.info("Updating inference_info...") # Check for existing inference_info if "inference_info" in dataset.column_names: try: existing_info = json.loads(dataset[0]["inference_info"]) if not isinstance(existing_info, list): existing_info = [existing_info] except (json.JSONDecodeError, TypeError): existing_info = [] dataset = dataset.remove_columns(["inference_info"]) else: existing_info = [] # Add new inference info new_info = { "column_name": "markdown", "model_id": model, "processing_date": datetime.now().isoformat(), "resolution_mode": resolution_mode, "base_size": final_base_size, "image_size": final_image_size, "crop_mode": final_crop_mode, "prompt": prompt, "script": "deepseek-ocr.py", "script_version": "1.0.0", "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py", "implementation": "transformers (sequential)", } existing_info.append(new_info) # Add updated inference_info column info_json = json.dumps(existing_info, ensure_ascii=False) dataset = dataset.add_column("inference_info", [info_json] * len(dataset)) # Push to hub logger.info(f"Pushing to {output_dataset}") dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) # Calculate processing time end_time = datetime.now() processing_duration = end_time - start_time processing_time = f"{processing_duration.total_seconds() / 60:.1f} minutes" # Create and push dataset card logger.info("Creating dataset card...") card_content = create_dataset_card( source_dataset=input_dataset, model=model, num_samples=len(dataset), processing_time=processing_time, resolution_mode=resolution_mode, base_size=final_base_size, image_size=final_image_size, crop_mode=final_crop_mode, image_column=image_column, split=split, ) card = DatasetCard(card_content) card.push_to_hub(output_dataset, token=HF_TOKEN) logger.info("✅ Dataset card created and pushed!") logger.info("✅ OCR conversion complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset}" ) if __name__ == "__main__": # Show example usage if no arguments if len(sys.argv) == 1: print("=" * 80) print("DeepSeek-OCR to Markdown Converter (Transformers)") print("=" * 80) print("\nThis script converts document images to markdown using") print("DeepSeek-OCR with the official Transformers API.") print("\nFeatures:") print("- Multiple resolution modes (Tiny/Small/Base/Large/Gundam)") print("- LaTeX equation recognition") print("- Table extraction and formatting") print("- Document structure preservation") print("- Image grounding and spatial layout") print("- Multilingual support") print("\nNote: Sequential processing (no batching). Slower than vLLM scripts.") print("\nExample usage:") print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):") print(" uv run deepseek-ocr.py document-images markdown-docs") print("\n2. High quality mode (Large - 1280×1280):") print(" uv run deepseek-ocr.py scanned-pdfs extracted-text --resolution-mode large") print("\n3. Fast processing (Tiny - 512×512):") print(" uv run deepseek-ocr.py quick-test output --resolution-mode tiny") print("\n4. Process a subset for testing:") print(" uv run deepseek-ocr.py large-dataset test-output --max-samples 10") print("\n5. Custom resolution:") print(" uv run deepseek-ocr.py dataset output \\") print(" --base-size 1024 --image-size 640 --crop-mode") print("\n6. Running on HF Jobs:") print(" hf jobs uv run --flavor l4x1 \\") print(' --secrets HF_TOKEN \\') print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr.py \\") print(" your-document-dataset \\") print(" your-markdown-output") print("\n" + "=" * 80) print("\nFor full help, run: uv run deepseek-ocr.py --help") sys.exit(0) parser = argparse.ArgumentParser( description="OCR images to markdown using DeepSeek-OCR (Transformers)", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Resolution Modes: tiny 512×512 pixels, fast processing (64 vision tokens) small 640×640 pixels, balanced (100 vision tokens) base 1024×1024 pixels, high quality (256 vision tokens) large 1280×1280 pixels, maximum quality (400 vision tokens) gundam Dynamic multi-tile processing (adaptive) Examples: # Basic usage with default Gundam mode uv run deepseek-ocr.py my-images-dataset ocr-results # High quality processing uv run deepseek-ocr.py documents extracted-text --resolution-mode large # Fast processing for testing uv run deepseek-ocr.py dataset output --resolution-mode tiny --max-samples 100 # Custom resolution settings uv run deepseek-ocr.py dataset output --base-size 1024 --image-size 640 --crop-mode """, ) parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub") parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub") parser.add_argument( "--image-column", default="image", help="Column containing images (default: image)", ) parser.add_argument( "--model", default="deepseek-ai/DeepSeek-OCR", help="Model to use (default: deepseek-ai/DeepSeek-OCR)", ) parser.add_argument( "--resolution-mode", default="gundam", choices=list(RESOLUTION_MODES.keys()) + ["custom"], help="Resolution mode preset (default: gundam)", ) parser.add_argument( "--base-size", type=int, help="Base resolution size (overrides resolution-mode)", ) parser.add_argument( "--image-size", type=int, help="Image tile size (overrides resolution-mode)", ) parser.add_argument( "--crop-mode", action="store_true", help="Enable dynamic multi-tile cropping (overrides resolution-mode)", ) parser.add_argument( "--prompt", default="\n<|grounding|>Convert the document to markdown.", help="Prompt for OCR (default: grounding markdown conversion)", ) parser.add_argument("--hf-token", help="Hugging Face API token") parser.add_argument( "--split", default="train", help="Dataset split to use (default: train)" ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--private", action="store_true", help="Make output dataset private" ) parser.add_argument( "--shuffle", action="store_true", help="Shuffle the dataset before processing (useful for random sampling)", ) parser.add_argument( "--seed", type=int, default=42, help="Random seed for shuffling (default: 42)", ) args = parser.parse_args() main( input_dataset=args.input_dataset, output_dataset=args.output_dataset, image_column=args.image_column, model=args.model, resolution_mode=args.resolution_mode, base_size=args.base_size, image_size=args.image_size, crop_mode=args.crop_mode if args.crop_mode else None, prompt=args.prompt, hf_token=args.hf_token, split=args.split, max_samples=args.max_samples, private=args.private, shuffle=args.shuffle, seed=args.seed, )