| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						""" LTG-BERT configutation """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | 
					
					
						
						| 
							 | 
						    "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word", | 
					
					
						
						| 
							 | 
						    "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword", | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json", | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json", | 
					
					
						
						| 
							 | 
						    "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json" | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class LtgBertConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to | 
					
					
						
						| 
							 | 
						    instantiate an LTG-BERT model according to the specified arguments, defining the model architecture. | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
					
						
						| 
							 | 
						    documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 16384): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`LtgBertModel`]. | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 768): | 
					
					
						
						| 
							 | 
						            Dimensionality of the encoder layers and the pooler layer. | 
					
					
						
						| 
							 | 
						        num_hidden_layers (`int`, *optional*, defaults to 12): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 12): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to 2048): | 
					
					
						
						| 
							 | 
						            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
					
						
						| 
							 | 
						            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
					
						
						| 
							 | 
						        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
					
						
						| 
							 | 
						            just in case (e.g., 512 or 1024 or 2048). | 
					
					
						
						| 
							 | 
						        layer_norm_eps (`float`, *optional*, defaults to 1e-12): | 
					
					
						
						| 
							 | 
						            The epsilon used by the layer normalization layers. | 
					
					
						
						| 
							 | 
						        classifier_dropout (`float`, *optional*): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the classification head. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    model_type = "ltgbert" | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=16384, | 
					
					
						
						| 
							 | 
						        attention_probs_dropout_prob=0.1, | 
					
					
						
						| 
							 | 
						        hidden_dropout_prob=0.1, | 
					
					
						
						| 
							 | 
						        hidden_size=768, | 
					
					
						
						| 
							 | 
						        intermediate_size=2048, | 
					
					
						
						| 
							 | 
						        max_position_embeddings=512, | 
					
					
						
						| 
							 | 
						        position_bucket_size=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=12, | 
					
					
						
						| 
							 | 
						        num_hidden_layers=12, | 
					
					
						
						| 
							 | 
						        layer_norm_eps=1.0e-7, | 
					
					
						
						| 
							 | 
						        pad_token_id=4, | 
					
					
						
						| 
							 | 
						        output_all_encoded_layers=True, | 
					
					
						
						| 
							 | 
						        classifier_dropout=None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__(pad_token_id=pad_token_id, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.num_hidden_layers = num_hidden_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        self.hidden_dropout_prob = hidden_dropout_prob | 
					
					
						
						| 
							 | 
						        self.attention_probs_dropout_prob = attention_probs_dropout_prob | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.output_all_encoded_layers = output_all_encoded_layers | 
					
					
						
						| 
							 | 
						        self.position_bucket_size = position_bucket_size | 
					
					
						
						| 
							 | 
						        self.layer_norm_eps = layer_norm_eps | 
					
					
						
						| 
							 | 
						        self.classifier_dropout = classifier_dropout | 
					
					
						
						| 
							 | 
						
 |