readme: add initial version
Browse files
    	
        README.md
    CHANGED
    
    | @@ -7,4 +7,173 @@ widget: | |
| 7 | 
             
            - text: "Det vore [MASK] häller nödvändigt att be"
         | 
| 8 | 
             
            - text: "Comme, à cette époque [MASK] était celle de la"
         | 
| 9 | 
             
            - text: "In [MASK] an atmosphärischen Nahrungsmitteln"
         | 
| 10 | 
            -
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 7 | 
             
            - text: "Det vore [MASK] häller nödvändigt att be"
         | 
| 8 | 
             
            - text: "Comme, à cette époque [MASK] était celle de la"
         | 
| 9 | 
             
            - text: "In [MASK] an atmosphärischen Nahrungsmitteln"
         | 
| 10 | 
            +
            ---
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # hmBERT: Historical Multilingual Language Models for Named Entity Recognition
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            More information about our hmBERT model can be found in our new paper:
         | 
| 15 | 
            +
            ["hmBERT: Historical Multilingual Language Models for Named Entity Recognition"](https://arxiv.org/abs/2205.15575).
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            ## Languages
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            | Language | Training data | Size 
         | 
| 22 | 
            +
            | -------- | ------------- | ----
         | 
| 23 | 
            +
            | German   | [Europeana](http://www.europeana-newspapers.eu/)       | 13-28GB (filtered)
         | 
| 24 | 
            +
            | French   | [Europeana](http://www.europeana-newspapers.eu/)       | 11-31GB (filtered)
         | 
| 25 | 
            +
            | English  | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
         | 
| 26 | 
            +
            | Finnish  | [Europeana](http://www.europeana-newspapers.eu/)       | 1.2GB
         | 
| 27 | 
            +
            | Swedish  | [Europeana](http://www.europeana-newspapers.eu/)       | 1.1GB
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ## Models
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            At the moment, the following models are available on the model hub:
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            | Model identifier                              | Model Hub link
         | 
| 34 | 
            +
            | --------------------------------------------- | --------------------------------------------------------------------------
         | 
| 35 | 
            +
            | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
         | 
| 36 | 
            +
            | `dbmdz/bert-base-historic-english-cased`      | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
         | 
| 37 | 
            +
            | `dbmdz/bert-base-finnish-europeana-cased`     | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
         | 
| 38 | 
            +
            | `dbmdz/bert-base-swedish-europeana-cased`     | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            # Corpora Stats
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ## German Europeana Corpus
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
         | 
| 45 | 
            +
            and use less-noisier data:
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            | OCR confidence | Size
         | 
| 48 | 
            +
            | -------------- | ----
         | 
| 49 | 
            +
            | **0.60**       | 28GB
         | 
| 50 | 
            +
            | 0.65           | 18GB
         | 
| 51 | 
            +
            | 0.70           | 13GB
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            ## French Europeana Corpus
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            Like German, we use different ocr confidence thresholds:
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            | OCR confidence | Size
         | 
| 62 | 
            +
            | -------------- | ----
         | 
| 63 | 
            +
            | 0.60           | 31GB
         | 
| 64 | 
            +
            | 0.65           | 27GB
         | 
| 65 | 
            +
            | **0.70**       | 27GB
         | 
| 66 | 
            +
            | 0.75           | 23GB
         | 
| 67 | 
            +
            | 0.80           | 11GB
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ## British Library Corpus
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            | Years             | Size
         | 
| 78 | 
            +
            | ----------------- | ----
         | 
| 79 | 
            +
            | ALL               | 24GB
         | 
| 80 | 
            +
            | >= 1800 && < 1900 | 24GB
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            We use the year filtered variant. The following plot shows a tokens per year distribution:
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            ## Finnish Europeana Corpus
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            | OCR confidence | Size
         | 
| 89 | 
            +
            | -------------- | ----
         | 
| 90 | 
            +
            | 0.60           | 1.2GB
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            The following plot shows a tokens per year distribution:
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            ## Swedish Europeana Corpus
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            | OCR confidence | Size
         | 
| 99 | 
            +
            | -------------- | ----
         | 
| 100 | 
            +
            | 0.60           | 1.1GB
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            The following plot shows a tokens per year distribution:
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            ## All Corpora
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            The following plot shows a tokens per year distribution of the complete training corpus:
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            # Multilingual Vocab generation
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
         | 
| 115 | 
            +
            The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            | Language | Size
         | 
| 118 | 
            +
            | -------- | ----
         | 
| 119 | 
            +
            | German   | 10GB
         | 
| 120 | 
            +
            | French   | 10GB
         | 
| 121 | 
            +
            | English  | 10GB
         | 
| 122 | 
            +
            | Finnish  | 9.5GB
         | 
| 123 | 
            +
            | Swedish  | 9.7GB
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            | Language | NER corpora
         | 
| 128 | 
            +
            | -------- | ------------------
         | 
| 129 | 
            +
            | German   | CLEF-HIPE, NewsEye
         | 
| 130 | 
            +
            | French   | CLEF-HIPE, NewsEye
         | 
| 131 | 
            +
            | English  | CLEF-HIPE
         | 
| 132 | 
            +
            | Finnish  | NewsEye
         | 
| 133 | 
            +
            | Swedish  | NewsEye
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            | Language | Subword fertility  | Unknown portion
         | 
| 138 | 
            +
            | -------- | ------------------ | ---------------
         | 
| 139 | 
            +
            | German   | 1.43               | 0.0004
         | 
| 140 | 
            +
            | French   | 1.25               | 0.0001
         | 
| 141 | 
            +
            | English  | 1.25               | 0.0
         | 
| 142 | 
            +
            | Finnish  | 1.69               | 0.0007
         | 
| 143 | 
            +
            | Swedish  | 1.43               | 0.0
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            | Language | Subword fertility  | Unknown portion
         | 
| 148 | 
            +
            | -------- | ------------------ | ---------------
         | 
| 149 | 
            +
            | German   | 1.31               | 0.0004
         | 
| 150 | 
            +
            | French   | 1.16               | 0.0001
         | 
| 151 | 
            +
            | English  | 1.17               | 0.0
         | 
| 152 | 
            +
            | Finnish  | 1.54               | 0.0007
         | 
| 153 | 
            +
            | Swedish  | 1.32               | 0.0
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            # Final pretraining corpora
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            | Language | Size
         | 
| 160 | 
            +
            | -------- | ----
         | 
| 161 | 
            +
            | German   | 28GB
         | 
| 162 | 
            +
            | French   | 27GB
         | 
| 163 | 
            +
            | English  | 24GB
         | 
| 164 | 
            +
            | Finnish  | 27GB
         | 
| 165 | 
            +
            | Swedish  | 27GB
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            Total size is 130GB.
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            # Pretraining
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            Details about the pretraining are coming soon.
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            # Acknowledgments
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
         | 
| 176 | 
            +
            TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
         | 
| 179 | 
            +
            it is possible to download both cased and uncased models from their S3 storage 🤗
         | 

