File size: 40,133 Bytes
5951289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
from .modeling_deepseekv2 import DeepseekV2Model, DeepseekV2ForCausalLM
from .configuration_deepseek_v2 import DeepseekV2Config
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from typing import List, Optional, Tuple, Union
from transformers.cache_utils import Cache
import requests
from PIL import Image, ImageOps, ImageDraw, ImageFont
from io import BytesIO
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import os
from .deepencoder import build_sam_vit_b, build_clip_l, MlpProjector
from addict import Dict
from transformers import TextStreamer
from .conversation import get_conv_template
from abc import ABC
import math
import re
from tqdm import tqdm
import numpy as np
import time
def load_image(image_path):
try:
image = Image.open(image_path)
corrected_image = ImageOps.exif_transpose(image)
return corrected_image
except Exception as e:
print(f"error: {e}")
try:
return Image.open(image_path)
except:
return None
def re_match(text):
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
# pattern1 = r'<\|ref\|>.*?<\|/ref\|>\n'
# new_text1 = re.sub(pattern1, '', text, flags=re.DOTALL)
mathes_image = []
mathes_other = []
for a_match in matches:
if '<|ref|>image<|/ref|>' in a_match[0]:
mathes_image.append(a_match[0])
else:
mathes_other.append(a_match[0])
return matches, mathes_image, mathes_other
def extract_coordinates_and_label(ref_text, image_width, image_height):
try:
label_type = ref_text[1]
cor_list = eval(ref_text[2])
except Exception as e:
print(e)
return None
return (label_type, cor_list)
def draw_bounding_boxes(image, refs, ouput_path):
image_width, image_height = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
draw2 = ImageDraw.Draw(overlay)
# try:
# except IOError:
# try:
# font = ImageFont.truetype("DejaVuSans.ttf", 20)
# except IOError:
font = ImageFont.load_default()
img_idx = 0
for i, ref in enumerate(refs):
try:
result = extract_coordinates_and_label(ref, image_width, image_height)
if result:
label_type, points_list = result
color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
color_a = color + (20, )
for points in points_list:
x1, y1, x2, y2 = points
x1 = int(x1 / 999 * image_width)
y1 = int(y1 / 999 * image_height)
x2 = int(x2 / 999 * image_width)
y2 = int(y2 / 999 * image_height)
if label_type == 'image':
try:
cropped = image.crop((x1, y1, x2, y2))
cropped.save(f"{ouput_path}/images/{img_idx}.jpg")
except Exception as e:
print(e)
pass
img_idx += 1
try:
if label_type == 'title':
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
else:
draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
text_x = x1
text_y = max(0, y1 - 15)
text_bbox = draw.textbbox((0, 0), label_type, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
fill=(255, 255, 255, 30))
draw.text((text_x, text_y), label_type, font=font, fill=color)
except:
pass
except:
continue
img_draw.paste(overlay, (0, 0), overlay)
return img_draw
def process_image_with_refs(image, ref_texts, output_path):
result_image = draw_bounding_boxes(image, ref_texts, output_path)
return result_image
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
return best_ratio
def dynamic_preprocess(image, min_num=2, max_num=9, image_size=640, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
# print(target_ratios)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# print(target_aspect_ratio)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def normalize_transform(mean, std):
if mean is None and std is None:
transform = None
elif mean is None and std is not None:
mean = [0.] * len(std)
transform = transforms.Normalize(mean=mean, std=std)
elif mean is not None and std is None:
std = [1.] * len(mean)
transform = transforms.Normalize(mean=mean, std=std)
else:
transform = transforms.Normalize(mean=mean, std=std)
return transform
def format_messages(
conversations: List[Dict[str, str]],
sft_format: str = "deepseek",
system_prompt: str = "",
):
"""
Applies the SFT template to conversation.
Args:
conversations (List[Dict]): A List of messages.
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
Returns:
sft_prompt (str): The formatted text.
"""
conv = get_conv_template(sft_format)
conv.set_system_message(system_prompt)
for message in conversations:
conv.append_message(message["role"], message["content"].strip())
sft_prompt = conv.get_prompt().strip()
return sft_prompt
def text_encode(tokenizer, text: str, bos: bool = True, eos: bool = False):
t = tokenizer.encode(text, add_special_tokens=False)
bos_id = 0
eos_id = 1
if bos:
t = [bos_id] + t
if eos:
t = t + [eos_id]
return t
def load_pil_images(conversations: List[Dict[str, str]]) -> List[Image.Image]:
"""
Args:
conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
[
{
"role": "User",
"content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
"images": ["./examples/table_datasets.png"]
},
{"role": "Assistant", "content": ""},
]
Returns:
pil_images (List[PIL.Image.Image]): the list of PIL images.
"""
pil_images = []
for message in conversations:
if "images" not in message:
continue
for image_path in message["images"]:
# print('----------------')
# print(image_path)
# print('----------------')
# exit()
# pil_img = Image.open(image_path)
pil_img = load_image(image_path)
pil_img = pil_img.convert("RGB")
pil_images.append(pil_img)
return pil_images
class BaseTransform(ABC):
def set_rng(self, *args, **kwargs):
pass
def __call__(self, *args, **kwargs) -> torch.Tensor:
pass
@property
def default_shape(self):
raise NotImplementedError
class BasicImageTransform(BaseTransform):
def __init__(
self,
mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
normalize: bool = True
):
self.mean = mean
self.std = std
transform_pipelines = [
transforms.ToTensor()
]
normalize = normalize_transform(mean, std) if normalize else nn.Identity()
if normalize is not None:
transform_pipelines.append(normalize)
self.transform = transforms.Compose(transform_pipelines)
def __call__(self, x):
x = self.transform(x)
return x
class NoEOSTextStreamer(TextStreamer):
def on_finalized_text(self, text: str, stream_end: bool = False):
eos_text = self.tokenizer.decode([self.tokenizer.eos_token_id], skip_special_tokens=False)
text = text.replace(eos_text, "\n")
print(text, flush=True, end="")
class DeepseekOCRConfig(DeepseekV2Config):
model_type = "DeepseekOCR"
class DeepseekOCRModel(DeepseekV2Model):
config_class = DeepseekOCRConfig
def __init__(self, config: DeepseekV2Config):
super(DeepseekOCRModel, self).__init__(config)
self.sam_model = build_sam_vit_b()
self.vision_model = build_clip_l()
# self.conv_2 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=2, stride=2)
n_embed = 1280
self.projector = MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=n_embed))
embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.FloatTensor] = None,
images_spatial_crop: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
if inputs_embeds is None:
# inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.get_input_embeddings()(input_ids)
sam_model = getattr(self, 'sam_model', None)
# sam_model = self.sam_model
vision_model = getattr(self, 'vision_model', None)
if sam_model is not None and (input_ids.shape[1] != 1 or self.training) and torch.sum(images[0][1]).item() != 0:
idx = 0
# sam_model = torch.jit.script(sam_model)
# start_time = time.time()
for image, crop_shape in zip(images, images_spatial_crop):
images_in_this_batch = []
patches = image[0]
image_ori = image[1]
with torch.no_grad():
# with torch.inference_mode():
if torch.sum(patches).item() != 0:
# P, C, H, W = patches.shape
crop_flag = 1
local_features_1 = sam_model(patches)
local_features_2 = vision_model(patches, local_features_1)
# vit_time = time.time()
local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
local_features = self.projector(local_features)
global_features_1 = sam_model(image_ori)
global_features_2 = vision_model(image_ori, global_features_1)
global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features)
print('=====================')
print('BASE: ', global_features.shape)
print('PATCHES: ', local_features.shape)
print('=====================')
_, hw, n_dim = global_features.shape
h = w = int(hw ** 0.5)
_2, hw2, n_dim2 = local_features.shape
h2 = w2 = int(hw2 ** 0.5)
width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]
global_features = global_features.view(h, w, n_dim)
global_features = torch.cat(
[global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
)
global_features = global_features.view(-1, n_dim)
local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
local_features = torch.cat(
[local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
)
local_features = local_features.view(-1, n_dim2)
global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
# end_time = time.time()
# print('sam: ', sam_time - start_time)
# print('vit: ', vit_time - sam_time)
# print('all: ', end_time - start_time)
# exit()
else:
global_features_1 = sam_model(image_ori)
global_features_2 = vision_model(image_ori, global_features_1)
global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features)
print('=====================')
print('BASE: ', global_features.shape)
print('NO PATCHES')
print('=====================')
_, hw, n_dim = global_features.shape
h = w = int(hw ** 0.5)
global_features = global_features.view(h, w, n_dim)
global_features = torch.cat(
[global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
)
global_features = global_features.view(-1, n_dim)
global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
images_in_this_batch.append(global_local_features)
# print(inputs_embeds.shape)
if images_in_this_batch:
images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
# exit()
inputs_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1).cuda(), images_in_this_batch)
idx += 1
return super(DeepseekOCRModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
class DeepseekOCRForCausalLM(DeepseekV2ForCausalLM):
config_class = DeepseekOCRConfig
# supports_gradient_checkpointing = True
def __init__(self, config):
super(DeepseekV2ForCausalLM, self).__init__(config)
self.model = DeepseekOCRModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
images_seq_mask: Optional[torch.FloatTensor] = None,
images_spatial_crop: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
images=images,
images_seq_mask = images_seq_mask,
images_spatial_crop = images_spatial_crop,
return_dict=return_dict
)
# print(transformer_outputs)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
# logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
# Omit tokens covered by past_key_values
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if self.generation_config.cache_implementation == "static":
# # generation with static cache
# cache_position = kwargs.get("cache_position", None)
# if cache_position is None:
# past_length = 0
# else:
# past_length = cache_position[-1] + 1
# input_ids = input_ids[:, past_length:]
# position_ids = position_ids[:, past_length:]
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
# same goes for position ids. Could also help with continued generation.
cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
"images_seq_mask": kwargs.get("images_seq_mask", None),
"images_spatial_crop": kwargs.get("images_spatial_crop", None),
}
)
return model_inputs
def disable_torch_init(self):
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def infer(self, tokenizer, prompt='', image_file='', output_path = '', base_size=1024, image_size=640, crop_mode=True, test_compress=False, save_results=False, eval_mode=False):
self.disable_torch_init()
os.makedirs(output_path, exist_ok=True)
os.makedirs(f'{output_path}/images', exist_ok=True)
if prompt and image_file:
conversation = [
{
"role": "<|User|>",
# "content": "<image>\n<|grounding|>Given the layout of the image. ",
"content": f'{prompt}',
# "content": "君不见黄河之水天上来的下一句是什么?",
# "content": "<image>\nFree OCR. ",
# "content": "<image>\nParse the figure. ",
# "content": "<image>\nExtract the text in the image. ",
"images": [f'{image_file}'],
},
{"role": "<|Assistant|>", "content": ""},
]
elif prompt:
conversation = [
{
"role": "<|User|>",
# "content": "<image>\n<|grounding|>Given the layout of the image. ",
"content": f'{prompt}',
# "content": "君不见黄河之水天上来的下一句是什么?",
# "content": "<image>\nFree OCR. ",
# "content": "<image>\nParse the figure. ",
# "content": "<image>\nExtract the text in the image. ",
# "images": [f'{image_file}'],
},
{"role": "<|Assistant|>", "content": ""},
]
else:
assert False, f'prompt is none!'
prompt = format_messages(conversations=conversation, sft_format='plain', system_prompt='')
patch_size = 16
downsample_ratio = 4
images = load_pil_images(conversation)
valid_img_tokens = 0
ratio = 1
image_draw = images[0].copy()
w,h = image_draw.size
# print(w, h)
ratio = 1 - ((max(w, h) - min(w, h)) / (max(w, h)))
image_transform=BasicImageTransform(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), normalize=True)
images_seq_mask = []
image_token = '<image>'
image_token_id = 128815
text_splits = prompt.split(image_token)
images_list, images_crop_list, images_seq_mask = [], [], []
tokenized_str = []
images_spatial_crop = []
for text_sep, image in zip(text_splits, images):
tokenized_sep = text_encode(tokenizer, text_sep, bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
if crop_mode:
if image.size[0] <= 640 and image.size[1] <= 640:
crop_ratio = [1, 1]
else:
if crop_mode:
# best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
images_crop_raw, crop_ratio = dynamic_preprocess(image)
else:
# best_width, best_height = self.image_size, self.image_size
crop_ratio = [1, 1]
"""process the global view"""
# image = image.resize((base_size, base_size))
global_view = ImageOps.pad(image, (base_size, base_size),
color=tuple(int(x * 255) for x in image_transform.mean))
if base_size == 1024:
valid_img_tokens += int(256 * ratio)
elif base_size == 1280:
valid_img_tokens += int(400 * ratio)
# elif base_size == 640:
# valid_img_tokens += int(100 * ratio)
images_list.append(image_transform(global_view).to(torch.bfloat16))
# global_view_tensor = image_transform(global_view).to(torch.bfloat16)
width_crop_num, height_crop_num = crop_ratio
images_spatial_crop.append([width_crop_num, height_crop_num])
if width_crop_num > 1 or height_crop_num > 1:
"""process the local views"""
for i in range(len(images_crop_raw)):
images_crop_list.append(image_transform(images_crop_raw[i]).to(torch.bfloat16))
if image_size == 640:
valid_img_tokens += len(images_crop_list) * 100
num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
num_queries_base = math.ceil((base_size // patch_size) / downsample_ratio)
"""add image tokens"""
tokenized_image = ([image_token_id] * num_queries_base + [image_token_id]) * num_queries_base
tokenized_image += [image_token_id]
if width_crop_num > 1 or height_crop_num > 1:
tokenized_image += ([image_token_id] * (num_queries * width_crop_num) + [image_token_id]) * (
num_queries * height_crop_num)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
# num_image_tokens.append(len(tokenized_image))
else:
# best_width, best_height = self.image_size, self.image_size
# print(image.size, (best_width, best_height)) # check the select_best_resolutions func
"""process the global view"""
if image_size <= 640:
print('directly resize')
image = image.resize((image_size, image_size))
# else:
global_view = ImageOps.pad(image, (image_size, image_size),
color=tuple(int(x * 255) for x in image_transform.mean))
images_list.append(image_transform(global_view).to(torch.bfloat16))
if base_size == 1024:
valid_img_tokens += int(256 * ratio)
elif base_size == 1280:
valid_img_tokens += int(400 * ratio)
elif base_size == 640:
valid_img_tokens += int(100 * 1)
elif base_size == 512:
valid_img_tokens += int(64 * 1)
width_crop_num, height_crop_num = 1, 1
images_spatial_crop.append([width_crop_num, height_crop_num])
"""add image tokens"""
num_queries = math.ceil((image_size // patch_size) / downsample_ratio)
tokenized_image = ([image_token_id] * num_queries + [image_token_id]) * num_queries
tokenized_image += [image_token_id]
# tokenized_image += ([self.image_token_id] * (num_queries * width_crop_num) + [self.image_token_id]) * (
# num_queries * height_crop_num)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
# num_image_tokens.append(len(tokenized_image))
"""process the last text split"""
tokenized_sep = text_encode(tokenizer, text_splits[-1], bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""add the bos tokens"""
bos_id = 0
tokenized_str = [bos_id] + tokenized_str
images_seq_mask = [False] + images_seq_mask
input_ids = torch.LongTensor(tokenized_str)
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
if len(images_list) == 0:
images_ori = torch.zeros((1, 3, image_size, image_size))
images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
images_crop = torch.zeros((1, 3, base_size, base_size))
else:
images_ori = torch.stack(images_list, dim=0)
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
if images_crop_list:
images_crop = torch.stack(images_crop_list, dim=0)
else:
images_crop = torch.zeros((1, 3, base_size, base_size))
if not eval_mode:
streamer = NoEOSTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
with torch.autocast("cuda", dtype=torch.bfloat16):
with torch.no_grad():
output_ids = self.generate(
input_ids.unsqueeze(0).cuda(),
images=[(images_crop.cuda(), images_ori.cuda())],
images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
images_spatial_crop = images_spatial_crop,
# do_sample=False,
# num_beams = 1,
temperature=0.0,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
max_new_tokens=8192,
no_repeat_ngram_size = 20,
use_cache = True
)
else:
with torch.autocast("cuda", dtype=torch.bfloat16):
with torch.no_grad():
output_ids = self.generate(
input_ids.unsqueeze(0).cuda(),
images=[(images_crop.cuda(), images_ori.cuda())],
images_seq_mask = images_seq_mask.unsqueeze(0).cuda(),
images_spatial_crop = images_spatial_crop,
# do_sample=False,
# num_beams = 1,
temperature=0.0,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=8192,
no_repeat_ngram_size = 35,
use_cache = True
)
if '<image>' in conversation[0]['content'] and eval_mode:
outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
stop_str = '<|end▁of▁sentence|>'
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
# re_match
outputs = outputs.strip()
return outputs
if '<image>' in conversation[0]['content'] and test_compress:
outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
pure_texts_outputs_token_length = len(text_encode(tokenizer, outputs, bos=False, eos=False))
print('='*50)
print('image size: ', (w, h))
print('valid image tokens: ', int(valid_img_tokens))
print('output texts tokens (valid): ', pure_texts_outputs_token_length)
print('compression ratio: ', round(pure_texts_outputs_token_length/valid_img_tokens, 2))
print('='*50)
if '<image>' in conversation[0]['content'] and save_results:
outputs = tokenizer.decode(output_ids[0, input_ids.unsqueeze(0).cuda().shape[1]:])
stop_str = '<|end▁of▁sentence|>'
print('='*15 + 'save results:' + '='*15)
# # # # conv.messages[-1][-1] = outputs
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
matches_ref, matches_images, mathes_other = re_match(outputs)
# print(matches_ref)
result = process_image_with_refs(image_draw, matches_ref, output_path)
for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
outputs = outputs.replace(a_match_image, ' + '.jpg)\n')
for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
# if 'structural formula' in conversation[0]['content']:
# outputs = '<smiles>' + outputs + '</smiles>'
with open(f'{output_path}/result.mmd', 'w', encoding = 'utf-8') as afile:
afile.write(outputs)
if 'line_type' in outputs:
import matplotlib.pyplot as plt
lines = eval(outputs)['Line']['line']
line_type = eval(outputs)['Line']['line_type']
# print(lines)
endpoints = eval(outputs)['Line']['line_endpoint']
fig, ax = plt.subplots(figsize=(3,3), dpi=200)
ax.set_xlim(-15, 15)
ax.set_ylim(-15, 15)
for idx, line in enumerate(lines):
try:
p0 = eval(line.split(' -- ')[0])
p1 = eval(line.split(' -- ')[-1])
if line_type[idx] == '--':
ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
else:
ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
ax.scatter(p0[0], p0[1], s=5, color = 'k')
ax.scatter(p1[0], p1[1], s=5, color = 'k')
except:
pass
for endpoint in endpoints:
label = endpoint.split(': ')[0]
(x, y) = eval(endpoint.split(': ')[1])
ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points',
fontsize=5, fontweight='light')
plt.savefig(f'{output_path}/geo.jpg')
plt.close()
result.save(f"{output_path}/result_with_boxes.jpg")
|