File size: 9,957 Bytes
3f13c8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch
import tilelang
import tilelang.language as T
from typing import Tuple, Optional


tilelang.set_log_level("WARNING")

pass_configs = {
    tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
    tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
    tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
}

FP8 = "float8_e4m3"
BF16 = "bfloat16"
FP32 = "float32"


def fast_log2_ceil(x):
    bits_x = T.reinterpret("uint32", x)
    exp_x = (bits_x >> 23) & 0xFF
    man_bits = bits_x & ((1 << 23) - 1)
    return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))


def fast_pow2(x):
    bits_x = (x + 127) << 23
    return T.reinterpret("float32", bits_x)


def fast_round_scale(amax, fp8_max_inv):
    return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))


@tilelang.jit(pass_configs=pass_configs)
def act_quant_kernel(
    N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
):
    M = T.symbolic("M")
    fp8_min = -448.0
    fp8_max = 448.0
    fp8_max_inv = 1 / fp8_max
    num_stages = 0 if round_scale else 2
    blk_m = 32
    group_size = 128

    @T.prim_func
    def act_quant_kernel_(
        X: T.Tensor[(M, N), in_dtype],
        Y: T.Tensor[(M, N), out_dtype],
        S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
    ):
        with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
            pid_m,
            pid_n,
        ):
            x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
            x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
            amax_local = T.alloc_fragment((blk_m,), scale_dtype)
            s_local = T.alloc_fragment((blk_m,), scale_dtype)
            y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
            y_shared = T.alloc_shared((blk_m, group_size), out_dtype)

            for _ in T.Pipelined(1, num_stages=num_stages):
                T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
                T.copy(x_shared, x_local)
                T.reduce_absmax(x_local, amax_local, dim=1)
                for i in T.Parallel(blk_m):
                    amax_local[i] = T.max(amax_local[i], 1e-4)
                    if round_scale:
                        s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
                    else:
                        s_local[i] = amax_local[i] * fp8_max_inv
                for i, j in T.Parallel(blk_m, group_size):
                    y_local[i, j] = T.clamp(
                        x_local[i, j] / s_local[i], fp8_min, fp8_max
                    )
                for i in T.Parallel(blk_m):
                    S[pid_m * blk_m + i, pid_n] = s_local[i]
                T.copy(y_local, y_shared)
                T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])

    return act_quant_kernel_


def act_quant(
    x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Quantizes the input tensor `x` using block-wise quantization.

    Args:
        x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
        block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
        scale_fmt (Optional[str], optional): The format of the scale. Default is None.
    Returns:
        Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
            - The quantized tensor with dtype `torch.float8_e4m3fn`.
            - A tensor of scaling factors with dtype `torch.float32`.
    """
    assert x.is_contiguous(), "Input tensor must be contiguous"
    assert x.size(-1) % block_size == 0, (
        f"Last dimension size must be divisible by block_size (block_size={block_size})"
    )
    N = x.size(-1)
    y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
    s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
    kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
    kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
    return y, s


@tilelang.jit(pass_configs=pass_configs)
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
    assert out_dtype in [BF16, "float32"]

    M = T.symbolic("M")
    group_size = 128
    block_M = 32
    block_N = 128
    block_K = 128

    @T.prim_func
    def fp8_gemm_kernel_(
        A: T.Tensor[(M, K), FP8],
        B: T.Tensor[(N, K), FP8],
        C: T.Tensor[(M, N), out_dtype],
        scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
        scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
            bx,
            by,
        ):
            A_shared = T.alloc_shared((block_M, block_K), FP8)
            B_shared = T.alloc_shared((block_N, block_K), FP8)
            C_shared = T.alloc_shared((block_M, block_N), out_dtype)
            Scale_C_shared = T.alloc_shared((block_M), FP32)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)
            T.clear(C_local_accum)
            K_iters = T.ceildiv(K, block_K)
            for k in T.Pipelined(K_iters, num_stages=4):
                # Load A into shared memory
                T.copy(A[by * block_M, k * block_K], A_shared)
                # Load B into shared memory
                T.copy(B[bx * block_N, k * block_K], B_shared)
                # Load scale into shared memory
                Scale_B = scales_b[bx * block_N // group_size, k]
                for i in T.Parallel(block_M):
                    Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B

                T.gemm(A_shared, B_shared, C_local, transpose_B=True)
                # Promote to enable 2xAcc
                for i, j in T.Parallel(block_M, block_N):
                    C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
                T.clear(C_local)
            # TMA store
            T.copy(C_local_accum, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return fp8_gemm_kernel_


def fp8_gemm(
    a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
) -> torch.Tensor:
    """
    Perform a matrix multiplication using FP8 precision.

    Args:
        a (torch.Tensor): The first input matrix, must be contiguous.
        a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
        b (torch.Tensor): The second input matrix, must be contiguous.
        b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.

    Returns:
        torch.Tensor: The result of the matrix multiplication.
    """
    assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
    assert a_s.is_contiguous() and b_s.is_contiguous(), (
        "Scaling factor tensors must be contiguous"
    )
    K = a.size(-1)
    M = a.numel() // K
    N = b.size(0)
    c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
    kernel = fp8_gemm_kernel(N, K)
    kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
    return c


@tilelang.jit(out_idx=[4], pass_configs=pass_configs)
def fp8_index_kernel(h: int, d: int):
    b = T.symbolic("b")
    m = T.symbolic("m")
    n = T.symbolic("n")

    blk_n1 = 512
    blk_n2 = 128

    @T.prim_func
    def fp8_index_kernel_(
        q: T.Tensor[(b, m, h, d), FP8],
        q_s: T.Tensor[(b, m, h), FP32],
        k: T.Tensor[(b, n, d), FP8],
        k_s: T.Tensor[(b, n), FP32],
        o: T.Tensor[(b, m, n), FP32],
    ) -> None:
        with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n):
            q_smem = T.alloc_shared((h, d), FP8)
            T.copy(q[i_b, i_m, 0, 0], q_smem)

            q_s_frag = T.alloc_fragment(h, FP32)
            T.copy(q_s[i_b, i_m, 0], q_s_frag)

            for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2):
                k_smem = T.alloc_shared((blk_n2, d), FP8)
                T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem)

                k_s_frag = T.alloc_fragment(blk_n2, FP32)
                T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag)

                logits = T.alloc_fragment((blk_n2, h), FP32)
                T.gemm(
                    k_smem,
                    q_smem,
                    logits,
                    transpose_A=False,
                    transpose_B=True,
                    clear_accum=True,
                )

                for i_h, i3_n in T.Parallel(h, blk_n2):
                    logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h]

                logits_sum = T.alloc_fragment(blk_n2, FP32)
                T.reduce_sum(logits, logits_sum, dim=1)

                for i3_n in T.Parallel(blk_n2):
                    logits_sum[i3_n] *= k_s_frag[i3_n]

                T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2])

    return fp8_index_kernel_


def fp8_index(
    q: torch.Tensor,
    q_s: torch.Tensor,
    k: torch.Tensor,
    k_s: torch.Tensor,
) -> torch.Tensor:
    """
    Perform index score using FP8 precision.

    Args:
        q (torch.Tensor): The Q tensor, must be contiguous.
        q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous.
        k (torch.Tensor): The K tensor, must be contiguous.
        k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous.

        fp8 q @ fp8 k -> fp32 logits
        relu(fp32 logits) * q_s (weights) -> fp32 logits
        fp32 logits -> fp32 logits_sum
        fp32 logits_sum * k_s (e8m0) -> fp32 index_score
    """
    return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s)