import math from dataclasses import dataclass from typing import Tuple, Optional, Literal from einops import rearrange import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist from kernel import act_quant, fp8_gemm, fp8_index world_size = 1 rank = 0 block_size = 128 @dataclass class ModelArgs: """ Data class for defining model arguments and hyperparameters. Attributes: max_batch_size (int): Maximum batch size. max_seq_len (int): Maximum sequence length. dtype (Literal["bf16", "fp8"]): Data type for computations. scale_fmt (Optional[str]): Format for quantization scale. vocab_size (int): Vocabulary size. dim (int): Model dimension. inter_dim (int): Intermediate dimension for MLP layers. moe_inter_dim (int): Intermediate dimension for MoE layers. n_layers (int): Number of transformer layers. n_dense_layers (int): Number of dense layers in the model. n_heads (int): Number of attention heads. n_routed_experts (int): Number of routed experts for MoE layers. n_shared_experts (int): Number of shared experts for MoE layers. n_activated_experts (int): Number of activated experts in MoE layers. n_expert_groups (int): Number of expert groups. n_limited_groups (int): Number of limited groups for MoE routing. score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing. route_scale (float): Scaling factor for routing scores. q_lora_rank (int): LoRA rank for query projections. kv_lora_rank (int): LoRA rank for key-value projections. qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings. qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings. v_head_dim (int): Dimension for value projections. original_seq_len (int): Original sequence length. rope_theta (float): Base for rotary positional encoding. rope_factor (float): Scaling factor for extended sequence lengths. beta_fast (int): Fast beta correction factor. beta_slow (int): Slow beta correction factor. mscale (float): Scaling factor for extended attention. index_head_dim (int): Dimension for index head. index_topk (int): Top-k for index head. """ max_batch_size: int = 8 max_seq_len: int = 4096 * 4 dtype: Literal["bf16", "fp8"] = "bf16" scale_fmt: Optional[str] = None vocab_size: int = 102400 dim: int = 2048 inter_dim: int = 10944 moe_inter_dim: int = 1408 n_layers: int = 27 n_dense_layers: int = 1 n_heads: int = 16 # moe n_routed_experts: int = 64 n_shared_experts: int = 2 n_activated_experts: int = 6 n_expert_groups: int = 1 n_limited_groups: int = 1 score_func: Literal["softmax", "sigmoid"] = "softmax" route_scale: float = 1. # mla q_lora_rank: int = 0 kv_lora_rank: int = 512 qk_nope_head_dim: int = 128 qk_rope_head_dim: int = 64 v_head_dim: int = 128 # yarn original_seq_len: int = 4096 rope_theta: float = 10000.0 rope_factor: float = 40 beta_fast: int = 32 beta_slow: int = 1 mscale: float = 1. # index index_n_heads: int = 64 index_head_dim: int = 128 index_topk: int = 2048 class ParallelEmbedding(nn.Module): """ Embedding layer with parallelism support across distributed processes. Args: vocab_size (int): Vocabulary size. dim (int): Embedding dimension. """ def __init__(self, vocab_size: int, dim: int): super().__init__() self.vocab_size = vocab_size self.dim = dim assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})" self.part_vocab_size = (vocab_size // world_size) self.vocab_start_idx = rank * self.part_vocab_size self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for parallel embedding layer. Args: x (torch.Tensor): Input tensor containing token indices. Returns: torch.Tensor: Embedded representations. Raises: ValueError: If `world_size` is not defined. """ if world_size > 1: mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx) x = x - self.vocab_start_idx x[mask] = 0 y = F.embedding(x, self.weight) if world_size > 1: y[mask] = 0 dist.all_reduce(y) return y def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, scale_fmt: Optional[str] = None) -> torch.Tensor: """ Applies a linear transformation to the incoming data: y = xA^T + b. This function supports specialized implementations based on quantization and tensor formats. Args: x (torch.Tensor): The input tensor. weight (torch.Tensor): The weight tensor. It may be quantized and requires dequantization for certain cases. bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None. scale_fmt (Optional[str]): The format of scaling factors. Returns: torch.Tensor: The result of the linear transformation, which may involve quantization-aware computations depending on the input parameters. Notes: - If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version is used for computation. - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation. """ assert bias is None if weight.dtype != torch.float8_e4m3fn: return F.linear(x, weight) else: x, scale = act_quant(x, block_size, scale_fmt) return fp8_gemm(x, scale, weight, weight.scale) class Linear(nn.Module): """ Custom linear layer with support for quantized weights and optional bias. Args: in_features (int): Number of input features. out_features (int): Number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ dtype = torch.bfloat16 scale_fmt: Optional[str] = None def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype)) if self.weight.element_size() == 1: scale_out_features = (out_features + block_size - 1) // block_size scale_in_features = (in_features + block_size - 1) // block_size self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32)) else: self.register_parameter("scale", None) if bias: self.bias = nn.Parameter(torch.empty(out_features)) else: self.register_parameter("bias", None) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the custom linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor after linear computation. """ return linear(x, self.weight, self.bias, self.scale_fmt) class ColumnParallelLinear(Linear): """ Linear layer with column parallelism, splitting output features across distributed processes. Args: in_features (int): Number of input features. out_features (int): Total number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})" self.part_out_features = out_features // world_size super().__init__(in_features, self.part_out_features, bias, dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for column parallel linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor with column-parallel computation. """ y = linear(x, self.weight, self.bias, self.scale_fmt) return y class RowParallelLinear(Linear): """ Linear layer with row parallelism, splitting input features across distributed processes. Args: in_features (int): Total number of input features. out_features (int): Number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None): assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})" self.part_in_features = in_features // world_size self.reduce_output = reduce_output super().__init__(self.part_in_features, out_features, bias, dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for row parallel linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor with row-parallel computation. """ y = linear(x, self.weight, None, self.scale_fmt) if self.reduce_output and world_size > 1: y = y.float() dist.all_reduce(y) if self.bias is not None: y += self.bias return y.type_as(x) class RMSNorm(nn.Module): """ Root Mean Square Layer Normalization (RMSNorm). Args: dim (int): Dimension of the input tensor. eps (float): Epsilon value for numerical stability. Defaults to 1e-6. """ def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32)) def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None): """ Forward pass for RMSNorm. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Normalized tensor with the same shape as input. """ dtype = x.dtype if residual is None: x = x.float() var = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(var + self.eps) return (self.weight * x).to(dtype) else: x = residual = x.float() + residual.float() var = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(var + self.eps) return (self.weight * x).to(dtype), residual.to(dtype) class LayerNorm(nn.Module): """ Layer Normalization. """ def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32)) self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32)) def forward(self, x: torch.Tensor): return F.layer_norm(x.float(), (self.dim,), self.weight, self.bias, self.eps).type_as(x) def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor: """ Precomputes frequency-based complex exponential values for rotary positional embeddings. Args: args (ModelArgs): Model arguments containing positional embedding parameters. Returns: torch.Tensor: Precomputed complex exponential values for positional embeddings. """ dim = args.qk_rope_head_dim seqlen = args.max_seq_len beta_fast = args.beta_fast beta_slow = args.beta_slow base = args.rope_theta factor = args.rope_factor def find_correction_dim(num_rotations, dim, base, max_seq_len): """ Computes the correction dimension for a given number of rotations in the rotary positional embedding. Args: num_rotations (float): Number of rotations to compute the correction for. dim (int): Dimensionality of the embedding space. base (float): Base value for the exponential computation. max_seq_len (int): Maximum sequence length. Returns: float: The correction dimension based on the input parameters. """ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base)) def find_correction_range(low_rot, high_rot, dim, base, max_seq_len): """ Computes the range of correction dimensions for rotary positional embeddings. Args: low_rot (float): Lower bound for the number of rotations. high_rot (float): Upper bound for the number of rotations. dim (int): Dimensionality of the embedding space. base (float): Base value for the exponential computation. max_seq_len (int): Maximum sequence length. Returns: Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices. """ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len)) high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len)) return max(low, 0), min(high, dim-1) def linear_ramp_factor(min, max, dim): """ Computes a linear ramp function used to smooth values between a minimum and maximum range. Args: min (float): Minimum value for the ramp function. max (float): Maximum value for the ramp function. dim (int): Dimensionality of the ramp tensor. Returns: torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1, clamped to the range [0, 1]. """ if min == max: max += 0.001 linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) if seqlen > args.original_seq_len: low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len) smooth = 1 - linear_ramp_factor(low, high, dim // 2) freqs = freqs / factor * (1 - smooth) + freqs * smooth t = torch.arange(seqlen) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) return freqs_cis def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: """ Applies rotary positional embeddings to the input tensor. Args: x (torch.Tensor): Input tensor with positional embeddings to be applied. freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings. Returns: torch.Tensor: Tensor with rotary embeddings applied. """ dtype = x.dtype x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2)) freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1)) y = torch.view_as_real(x * freqs_cis).flatten(3) return y.to(dtype) def rotate_activation(x: torch.Tensor) -> torch.Tensor: assert x.dtype == torch.bfloat16 from fast_hadamard_transform import hadamard_transform hidden_size = x.size(-1) return hadamard_transform(x, scale=hidden_size ** -0.5) class Indexer(torch.nn.Module): def __init__(self, args: ModelArgs): super().__init__() self.dim: int = args.dim self.n_heads: int = args.index_n_heads self.n_local_heads = args.index_n_heads // world_size self.head_dim: int = args.index_head_dim self.rope_head_dim: int = args.qk_rope_head_dim self.index_topk: int = args.index_topk self.q_lora_rank: int = args.q_lora_rank self.wq_b = Linear(self.q_lora_rank, self.n_heads * self.head_dim) self.wk = Linear(self.dim, self.head_dim) self.k_norm = LayerNorm(self.head_dim) self.weights_proj = Linear(self.dim, self.n_heads, dtype=torch.get_default_dtype()) self.softmax_scale = self.head_dim ** -0.5 self.scale_fmt = args.scale_fmt self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim, dtype=torch.float8_e4m3fn), persistent=False) self.register_buffer("k_scale_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim // block_size, dtype=torch.float32), persistent=False) def forward(self, x: torch.Tensor, qr: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): bsz, seqlen, _ = x.size() end_pos = start_pos + seqlen q = self.wq_b(qr) q = rearrange(q, 'b s (h d) -> b s h d', d=self.head_dim) q_pe, q_nope = torch.split(q, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1) q_pe = apply_rotary_emb(q_pe, freqs_cis) q = torch.cat([q_pe, q_nope], dim=-1) k = self.wk(x) k = self.k_norm(k) k_pe, k_nope = torch.split(k, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1) k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis).squeeze(2) k = torch.cat([k_pe, k_nope], dim=-1) q = rotate_activation(q) k = rotate_activation(k) q_fp8, q_scale = act_quant(q, block_size, self.scale_fmt) k_fp8, k_scale = act_quant(k, block_size, self.scale_fmt) self.k_cache[:bsz, start_pos:end_pos] = k_fp8 self.k_scale_cache[:bsz, start_pos:end_pos] = k_scale weights = self.weights_proj(x) * self.n_heads ** -0.5 weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale index_score = fp8_index(q_fp8.contiguous(), weights, self.k_cache[:bsz, :end_pos].contiguous(), self.k_scale_cache[:bsz, :end_pos].contiguous()) if mask is not None: index_score += mask topk_indices = index_score.topk(min(self.index_topk, end_pos), dim=-1)[1] topk_indices_ = topk_indices.clone() dist.broadcast(topk_indices_, src=0) assert torch.all(topk_indices == topk_indices_), f"{topk_indices=} {topk_indices_=}" return topk_indices def weight_dequant(weight, scale): shape = weight.shape assert weight.dim() == 2 weight = weight.view(shape[0] // block_size, block_size, shape[1] // block_size, block_size).transpose(1, 2).contiguous().view(-1, block_size * block_size) weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(shape[0] // block_size, shape[1] // block_size, block_size, block_size).transpose(1, 2).contiguous().view(shape) return weight class MLA(nn.Module): """ Multi-Head Latent Attention (MLA) Layer. Attributes: dim (int): Dimensionality of the input features. n_heads (int): Number of attention heads. n_local_heads (int): Number of local attention heads for distributed systems. q_lora_rank (int): Rank for low-rank query projection. kv_lora_rank (int): Rank for low-rank key/value projection. qk_nope_head_dim (int): Dimensionality of non-positional query/key projections. qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections. qk_head_dim (int): Total dimensionality of query/key projections. v_head_dim (int): Dimensionality of value projections. softmax_scale (float): Scaling factor for softmax in attention computation. """ def __init__(self, args: ModelArgs): super().__init__() self.dim = args.dim self.n_heads = args.n_heads self.n_local_heads = args.n_heads // world_size self.q_lora_rank = args.q_lora_rank self.kv_lora_rank = args.kv_lora_rank self.qk_nope_head_dim = args.qk_nope_head_dim self.qk_rope_head_dim = args.qk_rope_head_dim self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim self.v_head_dim = args.v_head_dim self.wq_a = Linear(self.dim, self.q_lora_rank) self.q_norm = RMSNorm(self.q_lora_rank) self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim) self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim) self.kv_norm = RMSNorm(self.kv_lora_rank) self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim)) self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim) self.softmax_scale = self.qk_head_dim ** -0.5 if args.max_seq_len > args.original_seq_len: mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0 self.softmax_scale = self.softmax_scale * mscale * mscale self.indexer = Indexer(args) self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False) self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False) self.dequant_wkv_b = None def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): """ Forward pass for the Multi-Head Latent Attention (MLA) Layer. Args: x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim). start_pos (int): Starting position in the sequence for caching. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. Returns: torch.Tensor: Output tensor with the same shape as the input. """ bsz, seqlen, _ = x.size() end_pos = start_pos + seqlen qr = self.q_norm(self.wq_a(x)) q = self.wq_b(qr) q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) q_pe = apply_rotary_emb(q_pe, freqs_cis) kv = self.wkv_a(x) kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) kv = self.kv_norm(kv) k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis) self.kv_cache[:bsz, start_pos:end_pos] = kv self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2) if mask is not None: # MHA prefill q = torch.cat([q_nope, q_pe], dim=-1) kv = self.wkv_b(kv) kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim) k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1) scores = torch.einsum("bshd,bthd->bsht", q.float(), k.float()) * self.softmax_scale # indexer topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask) index_mask = torch.full((bsz, seqlen, seqlen), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0) index_mask += mask scores += index_mask.unsqueeze(2) scores = scores.softmax(dim=-1, dtype=torch.float32) x = torch.einsum("bsht,bthd->bshd", scores.type_as(x), v) else: # MHA decode if self.dequant_wkv_b is None and self.wkv_b.scale is not None: self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale) wkv_b = self.wkv_b.weight if self.dequant_wkv_b is None else self.dequant_wkv_b wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank) q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim]) scores = (torch.einsum("bshc,btc->bsht", q_nope.float(), self.kv_cache[:bsz, :end_pos].float()) + torch.einsum("bshr,btr->bsht", q_pe.float(), self.pe_cache[:bsz, :end_pos].float())) * self.softmax_scale # indexer topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask) index_mask = torch.full((bsz, 1, end_pos), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0) scores += index_mask.unsqueeze(2) scores = scores.softmax(dim=-1, dtype=torch.float32) x = torch.einsum("bsht,btc->bshc", scores.type_as(x), self.kv_cache[:bsz, :end_pos]) x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:]) x = self.wo(x.flatten(2)) return x class MLP(nn.Module): """ Multi-Layer Perceptron (MLP) used as a feed-forward layer. Attributes: w1 (nn.Module): Linear layer for input-to-hidden transformation. w2 (nn.Module): Linear layer for hidden-to-output transformation. w3 (nn.Module): Additional linear layer for feature transformation. """ def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True): """ Initializes the MLP layer. Args: dim (int): Input and output dimensionality. inter_dim (int): Hidden layer dimensionality. """ super().__init__() self.w1 = ColumnParallelLinear(dim, inter_dim) self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output) self.w3 = ColumnParallelLinear(dim, inter_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the MLP layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after MLP computation. """ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x)) class Gate(nn.Module): """ Gating mechanism for routing inputs in a mixture-of-experts (MoE) model. Attributes: dim (int): Dimensionality of input features. topk (int): Number of top experts activated for each input. n_groups (int): Number of groups for routing. topk_groups (int): Number of groups to route inputs to. score_func (str): Scoring function ('softmax' or 'sigmoid'). route_scale (float): Scaling factor for routing weights. weight (torch.nn.Parameter): Learnable weights for the gate. bias (Optional[torch.nn.Parameter]): Optional bias term for the gate. """ def __init__(self, args: ModelArgs): """ Initializes the Gate module. Args: args (ModelArgs): Model arguments containing gating parameters. """ super().__init__() self.dim = args.dim self.topk = args.n_activated_experts self.n_groups = args.n_expert_groups self.topk_groups = args.n_limited_groups self.score_func = args.score_func self.route_scale = args.route_scale self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim)) self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Forward pass for the gating mechanism. Args: x (torch.Tensor): Input tensor. Returns: Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices. """ scores = linear(x.float(), self.weight.float()) if self.score_func == "softmax": scores = scores.softmax(dim=-1) else: scores = scores.sigmoid() original_scores = scores if self.bias is not None: scores = scores + self.bias if self.n_groups > 1: scores = scores.view(x.size(0), self.n_groups, -1) if self.bias is None: group_scores = scores.amax(dim=-1) else: group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1) indices = group_scores.topk(self.topk_groups, dim=-1)[1] mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False) scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1) indices = scores.topk(self.topk, dim=-1)[1] weights = original_scores.gather(1, indices) if self.score_func == "sigmoid": weights /= weights.sum(dim=-1, keepdim=True) weights *= self.route_scale return weights, indices class Expert(nn.Module): """ Expert layer for Mixture-of-Experts (MoE) models. Attributes: w1 (nn.Module): Linear layer for input-to-hidden transformation. w2 (nn.Module): Linear layer for hidden-to-output transformation. w3 (nn.Module): Additional linear layer for feature transformation. """ def __init__(self, dim: int, inter_dim: int): """ Initializes the Expert layer. Args: dim (int): Input and output dimensionality. inter_dim (int): Hidden layer dimensionality. """ super().__init__() self.w1 = Linear(dim, inter_dim) self.w2 = Linear(inter_dim, dim) self.w3 = Linear(dim, inter_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the Expert layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after expert computation. """ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x)) class MoE(nn.Module): """ Mixture-of-Experts (MoE) module. Attributes: dim (int): Dimensionality of input features. n_routed_experts (int): Total number of experts in the model. n_local_experts (int): Number of experts handled locally in distributed systems. n_activated_experts (int): Number of experts activated for each input. gate (nn.Module): Gating mechanism to route inputs to experts. experts (nn.ModuleList): List of expert modules. shared_experts (nn.Module): Shared experts applied to all inputs. """ def __init__(self, args: ModelArgs): """ Initializes the MoE module. Args: args (ModelArgs): Model arguments containing MoE parameters. """ super().__init__() self.dim = args.dim assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})" self.n_routed_experts = args.n_routed_experts self.n_local_experts = args.n_routed_experts // world_size self.n_activated_experts = args.n_activated_experts self.experts_start_idx = rank * self.n_local_experts self.experts_end_idx = self.experts_start_idx + self.n_local_experts self.gate = Gate(args) self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None for i in range(self.n_routed_experts)]) self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the MoE module. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after expert routing and computation. """ shape = x.size() x = x.view(-1, self.dim) weights, indices = self.gate(x) y = torch.zeros_like(x, dtype=torch.float32) counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist() for i in range(self.experts_start_idx, self.experts_end_idx): if counts[i] == 0: continue expert = self.experts[i] idx, top = torch.where(indices == i) y[idx] += expert(x[idx]) * weights[idx, top, None] y += self.shared_experts(x) if world_size > 1: dist.all_reduce(y) return y.type_as(x).view(shape) class Block(nn.Module): """ Transformer block combining attention and feed-forward layers. Attributes: attn (nn.Module): Attention layer (MLA). ffn (nn.Module): Feed-forward network (MLP or MoE). attn_norm (nn.Module): Layer normalization for attention. ffn_norm (nn.Module): Layer normalization for feed-forward network. """ def __init__(self, layer_id: int, args: ModelArgs): """ Initializes the Transformer block. Args: layer_id (int): Layer index in the transformer. args (ModelArgs): Model arguments containing block parameters. """ super().__init__() self.attn = MLA(args) self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args) self.attn_norm = RMSNorm(args.dim) self.ffn_norm = RMSNorm(args.dim) def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor: """ Forward pass for the Transformer block. Args: x (torch.Tensor): Input tensor. start_pos (int): Starting position in the sequence. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. Returns: torch.Tensor: Output tensor after block computation. """ if residual is None: x, residual = self.attn_norm(x), x else: x, residual = self.attn_norm(x, residual) x = self.attn(x, start_pos, freqs_cis, mask) x, residual = self.ffn_norm(x, residual) x = self.ffn(x) return x, residual class Transformer(nn.Module): """ Transformer model with positional embeddings, multiple layers, and output projection. Attributes: max_seq_len (int): Maximum sequence length for the transformer. embed (nn.Module): Embedding layer for input tokens. layers (torch.nn.ModuleList): List of transformer blocks. norm (nn.Module): Layer normalization applied after all blocks. head (nn.Module): Output projection layer mapping to vocabulary size. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. """ def __init__(self, args: ModelArgs): """ Initializes the Transformer model. Args: args (ModelArgs): Model arguments containing transformer parameters. """ global world_size, rank world_size = dist.get_world_size() if dist.is_initialized() else 1 rank = dist.get_rank() if dist.is_initialized() else 0 Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16 Linear.scale_fmt = args.scale_fmt super().__init__() self.max_seq_len = args.max_seq_len self.embed = ParallelEmbedding(args.vocab_size, args.dim) self.layers = torch.nn.ModuleList() for layer_id in range(args.n_layers): self.layers.append(Block(layer_id, args)) self.norm = RMSNorm(args.dim) # lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later. self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32) self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False) @torch.inference_mode() def forward(self, tokens: torch.Tensor, start_pos: int = 0): """ Forward pass for the Transformer model. Args: tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len). start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0. Returns: torch.Tensor: Logits tensor of shape (batch_size, vocab_size). """ seqlen = tokens.size(1) freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen] mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None h, residual = self.embed(tokens), None for layer in self.layers: h, residual = layer(h, residual, start_pos, freqs_cis, mask) h, _ = self.norm(h, residual) logits = self.head(h[:, -1].float()) if world_size > 1: all_logits = [torch.empty_like(logits) for _ in range(world_size)] dist.all_gather(all_logits, logits) logits = torch.cat(all_logits, dim=-1) return logits if __name__ == "__main__": torch.set_default_dtype(torch.bfloat16) torch.set_default_device("cuda") torch.manual_seed(0) args = ModelArgs() x = torch.randint(0, args.vocab_size, (2, 128)) model = Transformer(args) print(model(x).size())