Create canny_block.py
Browse files- canny_block.py +87 -0
canny_block.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from diffusers.modular_pipelines import (
|
| 7 |
+
PipelineState,
|
| 8 |
+
ModularPipelineBlocks,
|
| 9 |
+
InputParam,
|
| 10 |
+
ComponentSpec,
|
| 11 |
+
OutputParam,
|
| 12 |
+
)
|
| 13 |
+
from controlnet_aux import CannyDetector
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class CannyBlock(ModularPipelineBlocks):
|
| 18 |
+
@property
|
| 19 |
+
def expected_components(self):
|
| 20 |
+
return [
|
| 21 |
+
ComponentSpec(name="canny_annotator", type_hint=CannyDetector),
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
@property
|
| 25 |
+
def inputs(self) -> List[InputParam]:
|
| 26 |
+
return [
|
| 27 |
+
InputParam(
|
| 28 |
+
"image",
|
| 29 |
+
type_hint=Union[Image.Image, np.ndarray],
|
| 30 |
+
required=True,
|
| 31 |
+
description="Image to compute canny filter on",
|
| 32 |
+
),
|
| 33 |
+
InputParam(
|
| 34 |
+
"low_threshold",
|
| 35 |
+
type_hint=int,
|
| 36 |
+
default=50,
|
| 37 |
+
),
|
| 38 |
+
InputParam("high_threshold", type_hint=int, default=200),
|
| 39 |
+
InputParam(
|
| 40 |
+
"detect_resolution",
|
| 41 |
+
type_hint=int,
|
| 42 |
+
default=1024,
|
| 43 |
+
description="Resolution to resize to when running the Canny filtering process.",
|
| 44 |
+
),
|
| 45 |
+
InputParam(
|
| 46 |
+
"image_resolution",
|
| 47 |
+
type_hint=int,
|
| 48 |
+
default=1024,
|
| 49 |
+
description="Resolution to resize the detected Canny edge map to.",
|
| 50 |
+
),
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
@property
|
| 54 |
+
def intermediate_outputs(self) -> List[OutputParam]:
|
| 55 |
+
return [
|
| 56 |
+
OutputParam(
|
| 57 |
+
"canny_map",
|
| 58 |
+
type_hint=Image,
|
| 59 |
+
description="Canny map for input image",
|
| 60 |
+
)
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
def compute_canny(self, components, image, low_threshold, high_threshold, detect_resolution, image_resolution):
|
| 64 |
+
canny_map = components.canny_annotator(
|
| 65 |
+
input_image=image,
|
| 66 |
+
low_threshold=low_threshold,
|
| 67 |
+
high_threshold=high_threshold,
|
| 68 |
+
detect_resolution=detect_resolution,
|
| 69 |
+
image_resolution=image_resolution,
|
| 70 |
+
)
|
| 71 |
+
return canny_map
|
| 72 |
+
|
| 73 |
+
@torch.no_grad()
|
| 74 |
+
def __call__(self, components, state: PipelineState) -> PipelineState:
|
| 75 |
+
block_state = self.get_block_state(state)
|
| 76 |
+
|
| 77 |
+
block_state.canny_map = self.compute_canny(
|
| 78 |
+
components,
|
| 79 |
+
block_state.image,
|
| 80 |
+
block_state.low_threshold,
|
| 81 |
+
block_state.high_threshold,
|
| 82 |
+
block_state.detect_resolution,
|
| 83 |
+
block_state.image_resolution,
|
| 84 |
+
)
|
| 85 |
+
self.set_block_state(state, block_state)
|
| 86 |
+
|
| 87 |
+
return components, state
|