File size: 8,842 Bytes
e9b4bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
TODO: need to implement temporal reasoning:
https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/chronoedit_diffusers/pipeline_chronoedit.py
"""

from diffusers.modular_pipelines import (
    ModularPipelineBlocks,
    ComponentSpec,
    BlockState,
    PipelineState,
    ModularPipeline,
    InputParam,
    LoopSequentialPipelineBlocks,
)
from diffusers.configuration_utils import FrozenDict
from diffusers.guiders import ClassifierFreeGuidance
from typing import List
from diffusers import AutoModel, UniPCMultistepScheduler
import torch
from diffusers.modular_pipelines.wan.denoise import WanLoopAfterDenoiser, WanDenoiseLoopWrapper


class ChronoEditLoopBeforeDenoiser(ModularPipelineBlocks):
    model_name = "chronoedit"

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "condition",
                required=True,
                type_hint=torch.Tensor,
                description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        latent_model_input = torch.cat([block_state.latents, block_state.condition], dim=1)
        block_state.latent_model_input = latent_model_input.to(block_state.latents.dtype)
        block_state.timestep = t.expand(block_state.latents.shape[0])
        return components, block_state


class ChronoEditLoopDenoiser(ModularPipelineBlocks):
    model_name = "chronoedit"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 1.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("transformer", AutoModel),
        ]

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("attention_kwargs"),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "condition",
                required=True,
                type_hint=torch.Tensor,
                description="The conditioning latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "image_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="The conditioning image embeddings to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                kwargs_type="denoiser_input_fields",
                description=(
                    "All conditional model inputs that need to be prepared with guider. "
                    "It should contain prompt_embeds/negative_prompt_embeds. "
                    "Please add `kwargs_type=denoiser_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
                ),
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor) -> PipelineState:
        #  Map the keys we'll see on each `guider_state_batch` (e.g. guider_state_batch.prompt_embeds)
        #  to the corresponding (cond, uncond) fields on block_state. (e.g. block_state.prompt_embeds, block_state.negative_prompt_embeds)
        guider_inputs = {
            "prompt_embeds": (
                getattr(block_state, "prompt_embeds", None),
                getattr(block_state, "negative_prompt_embeds", None),
            ),
        }
        components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)

        guider_state = components.guider.prepare_inputs(guider_inputs)

        # run the denoiser for each guidance batch
        for guider_state_batch in guider_state:
            components.guider.prepare_models(components.transformer)
            cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
            prompt_embeds = cond_kwargs.pop("prompt_embeds")

            # Predict the noise residual
            # store the noise_pred in guider_state_batch so that we can apply guidance across all batches
            guider_state_batch.noise_pred = components.transformer(
                hidden_states=block_state.latent_model_input,
                timestep=block_state.timestep,
                encoder_hidden_states=prompt_embeds,
                encoder_hidden_states_image=block_state.image_embeds,
                attention_kwargs=block_state.attention_kwargs,
                return_dict=False,
            )[0]
            components.guider.cleanup_models(components.transformer)

        # Perform guidance
        block_state.noise_pred = components.guider(guider_state)[0]

        return components, block_state


class ChronoEditDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "chronoedit"

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec(
                "guider",
                ClassifierFreeGuidance,
                config=FrozenDict({"guidance_scale": 1.0}),
                default_creation_method="from_config",
            ),
            ComponentSpec("scheduler", UniPCMultistepScheduler),
            ComponentSpec("transformer", AutoModel),
        ]

    @property
    def loop_inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)
        
        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )

        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


class ChronoEditLoopAfterDenoiser(WanLoopAfterDenoiser):
    model_name = "chronoedit"


class ChronoEditDenoiseStep(ChronoEditDenoiseLoopWrapper):
    block_classes = [ChronoEditLoopBeforeDenoiser, ChronoEditLoopDenoiser, ChronoEditLoopAfterDenoiser]
    block_names = ["before_denoiser", "denoiser", "after_denoiser"]