Upload decoders.py with huggingface_hub
Browse files- decoders.py +96 -0
decoders.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Wan and Hugging Face Teams. All rights reserved.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from diffusers.configuration_utils import FrozenDict
|
| 17 |
+
from diffusers.modular_pipelines import (
|
| 18 |
+
ModularPipelineBlocks, ComponentSpec, InputParam, OutputParam, PipelineState
|
| 19 |
+
)
|
| 20 |
+
from typing import List, Union
|
| 21 |
+
from diffusers import AutoencoderKLWan
|
| 22 |
+
from diffusers.video_processor import VideoProcessor
|
| 23 |
+
import torch
|
| 24 |
+
import PIL
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ChronoEditDecodeStep(ModularPipelineBlocks):
|
| 29 |
+
model_name = "chronoedit"
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def expected_components(self) -> List[ComponentSpec]:
|
| 33 |
+
return [
|
| 34 |
+
ComponentSpec("vae", AutoencoderKLWan),
|
| 35 |
+
ComponentSpec(
|
| 36 |
+
"video_processor",
|
| 37 |
+
VideoProcessor,
|
| 38 |
+
config=FrozenDict({"vae_scale_factor": 8}),
|
| 39 |
+
default_creation_method="from_config",
|
| 40 |
+
),
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
@property
|
| 44 |
+
def description(self) -> str:
|
| 45 |
+
return "Step that decodes the denoised latents into images"
|
| 46 |
+
|
| 47 |
+
@property
|
| 48 |
+
def inputs(self) -> List[InputParam]:
|
| 49 |
+
return [
|
| 50 |
+
InputParam(
|
| 51 |
+
"latents",
|
| 52 |
+
required=True,
|
| 53 |
+
type_hint=torch.Tensor,
|
| 54 |
+
description="The denoised latents from the denoising step",
|
| 55 |
+
),
|
| 56 |
+
InputParam("output_type", default="pil"),
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
@property
|
| 60 |
+
def intermediate_outputs(self) -> List[str]:
|
| 61 |
+
return [
|
| 62 |
+
OutputParam(
|
| 63 |
+
"videos",
|
| 64 |
+
type_hint=Union[List[List[PIL.Image.Image]], List[torch.Tensor], List[np.ndarray]],
|
| 65 |
+
description="The generated videos, can be a PIL.Image.Image, torch.Tensor or a numpy array",
|
| 66 |
+
)
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
@torch.no_grad()
|
| 70 |
+
def __call__(self, components, state: PipelineState) -> PipelineState:
|
| 71 |
+
block_state = self.get_block_state(state)
|
| 72 |
+
vae_dtype = components.vae.dtype
|
| 73 |
+
|
| 74 |
+
if not block_state.output_type == "latent":
|
| 75 |
+
latents = block_state.latents
|
| 76 |
+
latents_mean = (
|
| 77 |
+
torch.tensor(components.vae.config.latents_mean)
|
| 78 |
+
.view(1, components.vae.config.z_dim, 1, 1, 1)
|
| 79 |
+
.to(latents.device, latents.dtype)
|
| 80 |
+
)
|
| 81 |
+
latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(
|
| 82 |
+
1, components.vae.config.z_dim, 1, 1, 1
|
| 83 |
+
).to(latents.device, latents.dtype)
|
| 84 |
+
latents = latents / latents_std + latents_mean
|
| 85 |
+
latents = latents.to(vae_dtype)
|
| 86 |
+
block_state.videos = components.vae.decode(latents, return_dict=False)[0]
|
| 87 |
+
else:
|
| 88 |
+
block_state.videos = block_state.latents
|
| 89 |
+
|
| 90 |
+
block_state.videos = components.video_processor.postprocess_video(
|
| 91 |
+
block_state.videos, output_type=block_state.output_type
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self.set_block_state(state, block_state)
|
| 95 |
+
|
| 96 |
+
return components, state
|