Upload folder using huggingface_hub
Browse files- .ruff_cache/.gitignore +2 -0
- .ruff_cache/0.7.1/3405182261834977827 +0 -0
- .ruff_cache/CACHEDIR.TAG +1 -0
- before_denoise.py +7 -13
- decoders.py +3 -5
- demo.png +2 -2
- denoise.py +1 -1
- encoders.py +2 -2
- example.py +6 -7
- inputs.py +3 -3
- upload_block.py +11 -0
.ruff_cache/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Automatically created by ruff.
|
| 2 |
+
*
|
.ruff_cache/0.7.1/3405182261834977827
ADDED
|
Binary file (382 Bytes). View file
|
|
|
.ruff_cache/CACHEDIR.TAG
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Signature: 8a477f597d28d172789f06886806bc55
|
before_denoise.py
CHANGED
|
@@ -37,17 +37,11 @@ class ChronoEditSetTimestepsStep(ModularPipelineBlocks):
|
|
| 37 |
|
| 38 |
@property
|
| 39 |
def expected_components(self) -> List[ComponentSpec]:
|
| 40 |
-
return [
|
| 41 |
-
ComponentSpec("scheduler", UniPCMultistepScheduler)
|
| 42 |
-
]
|
| 43 |
|
| 44 |
@property
|
| 45 |
def inputs(self) -> List[InputParam]:
|
| 46 |
-
return [
|
| 47 |
-
InputParam("num_inference_steps", default=50),
|
| 48 |
-
InputParam("timesteps"),
|
| 49 |
-
InputParam("sigmas")
|
| 50 |
-
]
|
| 51 |
|
| 52 |
@property
|
| 53 |
def intermediate_outputs(self) -> List[OutputParam]:
|
|
@@ -72,7 +66,7 @@ class ChronoEditSetTimestepsStep(ModularPipelineBlocks):
|
|
| 72 |
block_state.timesteps,
|
| 73 |
block_state.sigmas,
|
| 74 |
)
|
| 75 |
-
|
| 76 |
self.set_block_state(state, block_state)
|
| 77 |
return components, state
|
| 78 |
|
|
@@ -186,18 +180,18 @@ class ChronoEditPrepareLatentStep(ModularPipelineBlocks):
|
|
| 186 |
)
|
| 187 |
mask_lat_size = mask_lat_size.transpose(1, 2)
|
| 188 |
mask_lat_size = mask_lat_size.to(latent_condition.device)
|
| 189 |
-
|
| 190 |
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
|
| 191 |
|
| 192 |
@torch.no_grad()
|
| 193 |
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 194 |
block_state = self.get_block_state(state)
|
| 195 |
-
|
| 196 |
self.check_inputs(block_state.height, block_state.width)
|
| 197 |
|
| 198 |
block_state.device = components._execution_device
|
| 199 |
block_state.num_channels_latents = components.num_channels_latents
|
| 200 |
-
|
| 201 |
batch_size = block_state.batch_size * block_state.num_videos_per_prompt
|
| 202 |
block_state.latents, block_state.condition = self.prepare_latents(
|
| 203 |
components,
|
|
@@ -214,5 +208,5 @@ class ChronoEditPrepareLatentStep(ModularPipelineBlocks):
|
|
| 214 |
)
|
| 215 |
|
| 216 |
self.set_block_state(state, block_state)
|
| 217 |
-
|
| 218 |
return components, state
|
|
|
|
| 37 |
|
| 38 |
@property
|
| 39 |
def expected_components(self) -> List[ComponentSpec]:
|
| 40 |
+
return [ComponentSpec("scheduler", UniPCMultistepScheduler)]
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@property
|
| 43 |
def inputs(self) -> List[InputParam]:
|
| 44 |
+
return [InputParam("num_inference_steps", default=50), InputParam("timesteps"), InputParam("sigmas")]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
@property
|
| 47 |
def intermediate_outputs(self) -> List[OutputParam]:
|
|
|
|
| 66 |
block_state.timesteps,
|
| 67 |
block_state.sigmas,
|
| 68 |
)
|
| 69 |
+
|
| 70 |
self.set_block_state(state, block_state)
|
| 71 |
return components, state
|
| 72 |
|
|
|
|
| 180 |
)
|
| 181 |
mask_lat_size = mask_lat_size.transpose(1, 2)
|
| 182 |
mask_lat_size = mask_lat_size.to(latent_condition.device)
|
| 183 |
+
|
| 184 |
return latents, torch.concat([mask_lat_size, latent_condition], dim=1)
|
| 185 |
|
| 186 |
@torch.no_grad()
|
| 187 |
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 188 |
block_state = self.get_block_state(state)
|
| 189 |
+
|
| 190 |
self.check_inputs(block_state.height, block_state.width)
|
| 191 |
|
| 192 |
block_state.device = components._execution_device
|
| 193 |
block_state.num_channels_latents = components.num_channels_latents
|
| 194 |
+
|
| 195 |
batch_size = block_state.batch_size * block_state.num_videos_per_prompt
|
| 196 |
block_state.latents, block_state.condition = self.prepare_latents(
|
| 197 |
components,
|
|
|
|
| 208 |
)
|
| 209 |
|
| 210 |
self.set_block_state(state, block_state)
|
| 211 |
+
|
| 212 |
return components, state
|
decoders.py
CHANGED
|
@@ -14,14 +14,12 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
|
| 16 |
from diffusers.configuration_utils import FrozenDict
|
| 17 |
-
from diffusers.modular_pipelines import
|
| 18 |
-
ModularPipelineBlocks, ComponentSpec, InputParam, OutputParam, PipelineState
|
| 19 |
-
)
|
| 20 |
from typing import List, Union
|
| 21 |
from diffusers import AutoencoderKLWan
|
| 22 |
from diffusers.video_processor import VideoProcessor
|
| 23 |
import torch
|
| 24 |
-
import PIL
|
| 25 |
import numpy as np
|
| 26 |
|
| 27 |
|
|
@@ -93,4 +91,4 @@ class ChronoEditDecodeStep(ModularPipelineBlocks):
|
|
| 93 |
|
| 94 |
self.set_block_state(state, block_state)
|
| 95 |
|
| 96 |
-
return components, state
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
|
| 16 |
from diffusers.configuration_utils import FrozenDict
|
| 17 |
+
from diffusers.modular_pipelines import ModularPipelineBlocks, ComponentSpec, InputParam, OutputParam, PipelineState
|
|
|
|
|
|
|
| 18 |
from typing import List, Union
|
| 19 |
from diffusers import AutoencoderKLWan
|
| 20 |
from diffusers.video_processor import VideoProcessor
|
| 21 |
import torch
|
| 22 |
+
import PIL
|
| 23 |
import numpy as np
|
| 24 |
|
| 25 |
|
|
|
|
| 91 |
|
| 92 |
self.set_block_state(state, block_state)
|
| 93 |
|
| 94 |
+
return components, state
|
demo.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
denoise.py
CHANGED
|
@@ -190,7 +190,7 @@ class ChronoEditDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
|
| 190 |
@torch.no_grad()
|
| 191 |
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 192 |
block_state = self.get_block_state(state)
|
| 193 |
-
|
| 194 |
block_state.num_warmup_steps = max(
|
| 195 |
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
|
| 196 |
)
|
|
|
|
| 190 |
@torch.no_grad()
|
| 191 |
def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
|
| 192 |
block_state = self.get_block_state(state)
|
| 193 |
+
|
| 194 |
block_state.num_warmup_steps = max(
|
| 195 |
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
|
| 196 |
)
|
encoders.py
CHANGED
|
@@ -88,7 +88,7 @@ class ChronoEditProcessImageStep(ModularPipelineBlocks):
|
|
| 88 |
def intermediate_outputs(self) -> List[OutputParam]:
|
| 89 |
return [
|
| 90 |
OutputParam("processed_image", type_hint=PipelineImageInput),
|
| 91 |
-
OutputParam("image_embeds", type_hint=torch.Tensor)
|
| 92 |
]
|
| 93 |
|
| 94 |
@property
|
|
@@ -118,7 +118,7 @@ class ChronoEditProcessImageStep(ModularPipelineBlocks):
|
|
| 118 |
block_state.image_embeds = image_embeds.repeat(batch_size, 1, 1).to(torch.bfloat16)
|
| 119 |
|
| 120 |
self.set_block_state(state, block_state)
|
| 121 |
-
|
| 122 |
return components, state
|
| 123 |
|
| 124 |
|
|
|
|
| 88 |
def intermediate_outputs(self) -> List[OutputParam]:
|
| 89 |
return [
|
| 90 |
OutputParam("processed_image", type_hint=PipelineImageInput),
|
| 91 |
+
OutputParam("image_embeds", type_hint=torch.Tensor),
|
| 92 |
]
|
| 93 |
|
| 94 |
@property
|
|
|
|
| 118 |
block_state.image_embeds = image_embeds.repeat(batch_size, 1, 1).to(torch.bfloat16)
|
| 119 |
|
| 120 |
self.set_block_state(state, block_state)
|
| 121 |
+
|
| 122 |
return components, state
|
| 123 |
|
| 124 |
|
example.py
CHANGED
|
@@ -2,24 +2,22 @@
|
|
| 2 |
Mimicked from https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/app.py
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
from diffusers.modular_pipelines import
|
| 6 |
from diffusers.utils import load_image
|
| 7 |
from diffusers import UniPCMultistepScheduler
|
| 8 |
-
from modular_blocks import ChronoEditBlocks
|
| 9 |
import torch
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
-
repo_id = "
|
| 13 |
-
blocks =
|
| 14 |
pipe = WanModularPipeline(blocks, repo_id)
|
| 15 |
-
|
| 16 |
pipe.load_components(
|
| 17 |
trust_remote_code=True,
|
| 18 |
device_map="cuda",
|
| 19 |
torch_dtype={"default": torch.bfloat16, "image_encoder": torch.float32},
|
| 20 |
)
|
| 21 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
|
| 22 |
-
pipe.load_lora_weights(
|
| 23 |
pipe.fuse_lora(lora_scale=1.0)
|
| 24 |
|
| 25 |
image = load_image("https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png")
|
|
@@ -31,8 +29,9 @@ out = pipe(
|
|
| 31 |
image=image,
|
| 32 |
prompt=prompt, # todo: enhance prompt
|
| 33 |
num_inference_steps=8, # todo: implement temporal reasoning
|
| 34 |
-
num_frames=5,
|
| 35 |
output_type="np",
|
|
|
|
| 36 |
)
|
| 37 |
frames = out.values["videos"][0]
|
| 38 |
Image.fromarray((frames[-1] * 255).clip(0, 255).astype("uint8")).save("demo.png")
|
|
|
|
| 2 |
Mimicked from https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/app.py
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
from diffusers.modular_pipelines import WanModularPipeline, ModularPipelineBlocks
|
| 6 |
from diffusers.utils import load_image
|
| 7 |
from diffusers import UniPCMultistepScheduler
|
|
|
|
| 8 |
import torch
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
+
repo_id = "diffusers-internal-dev/chronoedit-modular"
|
| 12 |
+
blocks = ModularPipelineBlocks.from_pretrained(repo_id, trust_remote_code=True)
|
| 13 |
pipe = WanModularPipeline(blocks, repo_id)
|
|
|
|
| 14 |
pipe.load_components(
|
| 15 |
trust_remote_code=True,
|
| 16 |
device_map="cuda",
|
| 17 |
torch_dtype={"default": torch.bfloat16, "image_encoder": torch.float32},
|
| 18 |
)
|
| 19 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=2.0)
|
| 20 |
+
pipe.load_lora_weights("nvidia/ChronoEdit-14B-Diffusers", weight_name="lora/chronoedit_distill_lora.safetensors")
|
| 21 |
pipe.fuse_lora(lora_scale=1.0)
|
| 22 |
|
| 23 |
image = load_image("https://huggingface.co/spaces/nvidia/ChronoEdit/resolve/main/examples/3.png")
|
|
|
|
| 29 |
image=image,
|
| 30 |
prompt=prompt, # todo: enhance prompt
|
| 31 |
num_inference_steps=8, # todo: implement temporal reasoning
|
| 32 |
+
num_frames=5, # https://huggingface.co/spaces/nvidia/ChronoEdit/blob/main/app.py#L152
|
| 33 |
output_type="np",
|
| 34 |
+
generator=torch.manual_seed(0),
|
| 35 |
)
|
| 36 |
frames = out.values["videos"][0]
|
| 37 |
Image.fromarray((frames[-1] * 255).clip(0, 255).astype("uint8")).save("demo.png")
|
inputs.py
CHANGED
|
@@ -86,11 +86,11 @@ class ChronoEditImageInputStep(ModularPipelineBlocks):
|
|
| 86 |
block_state = self.get_block_state(state)
|
| 87 |
image = block_state.image
|
| 88 |
mod_value = components.vae_scale_factor_spatial * components.transformer.config.patch_size[1]
|
| 89 |
-
|
| 90 |
width, height = calculate_dimensions(image, mod_value)
|
| 91 |
block_state.image = image.resize((width, height))
|
| 92 |
-
block_state.height = height
|
| 93 |
block_state.width = width
|
| 94 |
-
|
| 95 |
self.set_block_state(state, block_state)
|
| 96 |
return components, state
|
|
|
|
| 86 |
block_state = self.get_block_state(state)
|
| 87 |
image = block_state.image
|
| 88 |
mod_value = components.vae_scale_factor_spatial * components.transformer.config.patch_size[1]
|
| 89 |
+
|
| 90 |
width, height = calculate_dimensions(image, mod_value)
|
| 91 |
block_state.image = image.resize((width, height))
|
| 92 |
+
block_state.height = height
|
| 93 |
block_state.width = width
|
| 94 |
+
|
| 95 |
self.set_block_state(state, block_state)
|
| 96 |
return components, state
|
upload_block.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers.modular_pipelines import WanModularPipeline
|
| 2 |
+
|
| 3 |
+
from modular_blocks import ChronoEditBlocks
|
| 4 |
+
|
| 5 |
+
repo_id = "nvidia/ChronoEdit-14B-Diffusers"
|
| 6 |
+
blocks = ChronoEditBlocks()
|
| 7 |
+
|
| 8 |
+
blocks.push_to_hub("diffusers-internal-dev/chronoedit-modular")
|
| 9 |
+
|
| 10 |
+
pipe = WanModularPipeline(blocks, repo_id)
|
| 11 |
+
pipe.push_to_hub("diffusers-internal-dev/chronoedit-modular")
|