File size: 17,442 Bytes
5178ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Tuple
import torch
from diffusers.configuration_utils import FrozenDict
from diffusers.guiders import ClassifierFreeGuidance
from diffusers.models import AutoModel, WanTransformer3DModel
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.modular_pipelines import (
BlockState,
LoopSequentialPipelineBlocks,
ModularPipelineBlocks,
PipelineState,
ModularPipeline
)
from diffusers.modular_pipelines.modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MatrixGameWanLoopDenoiser(ModularPipelineBlocks):
model_name = "MatrixGameWan"
frame_seq_length = 880
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 5.0}),
default_creation_method="from_config",
),
ComponentSpec("transformer", AutoModel),
]
@property
def description(self) -> str:
return (
"Step within the denoising loop that denoise the latents with guidance. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `MatrixGameWanDenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("attention_kwargs"),
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
),
InputParam(
"image_mask_latents",
required=True,
type_hint=torch.Tensor,
),
InputParam(
"image_embeds",
required=True,
type_hint=torch.Tensor,
),
InputParam(
"keyboard_conditions",
required=True,
type_hint=torch.Tensor,
),
InputParam(
"mouse_conditions",
required=True,
type_hint=torch.Tensor,
),
InputParam(
"num_inference_steps",
required=True,
type_hint=int,
default=4,
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
),
InputParam(
kwargs_type="guider_input_fields",
description=(
"All conditional model inputs that need to be prepared with guider. "
"It should contain prompt_embeds/negative_prompt_embeds. "
"Please add `kwargs_type=guider_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
),
),
]
@torch.no_grad()
def __call__(
self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
) -> PipelineState:
cond_concat = block_state.image_mask_latents
keyboard_conditions = block_state.keyboard_conditions
mouse_conditions = block_state.mouse_conditions
visual_context = block_state.image_embeds
transformer_dtype = components.transformer.dtype
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
# Prepare mini‐batches according to guidance method and `guider_input_fields`
# Each guider_state_batch will have .prompt_embeds, .time_ids, text_embeds, image_embeds.
# e.g. for CFG, we prepare two batches: one for uncond, one for cond
# for first batch, guider_state_batch.prompt_embeds correspond to block_state.prompt_embeds
# for second batch, guider_state_batch.prompt_embeds correspond to block_state.negative_prompt_embeds
guider_state = components.guider.prepare_inputs(block_state, {})
# run the denoiser for each guidance batch
for guider_state_batch in guider_state:
components.guider.prepare_models(components.transformer)
cond_kwargs = guider_state_batch.as_dict()
# Predict the noise residual
# store the noise_pred in guider_state_batch so that we can apply guidance across all batches
guider_state_batch.noise_pred = components.transformer(
x=block_state.latents.to(transformer_dtype),
t=t.expand(block_state.latents.shape[0], block_state.num_frames_per_block),
visual_context=visual_context.to(transformer_dtype),
cond_concat=cond_concat.to(transformer_dtype),
keyboard_cond=keyboard_conditions,
mouse_cond=mouse_conditions,
kv_cache=block_state.kv_cache,
kv_cache_mouse=block_state.kv_cache_mouse,
kv_cache_keyboard=block_state.kv_cache_keyboard,
crossattn_cache=block_state.kv_cache_cross_attn,
current_start=block_state.current_frame_idx * self.frame_seq_length,
num_frames_per_block=block_state.num_frames_per_block,
)[0]
components.guider.cleanup_models(components.transformer)
# Perform guidance
block_state.noise_pred = components.guider(guider_state)[0]
return components, block_state
class MatrixGameWanLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "MatrixGameWan"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("scheduler", UniPCMultistepScheduler),
]
@property
def description(self) -> str:
return (
"step within the denoising loop that update the latents. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `MatrixGameWanDenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[Tuple[str, Any]]:
return []
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]
@torch.no_grad()
def __call__(self, components: ModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
# Perform scheduler step using the predicted output
latents_dtype = block_state.latents.dtype
step_index = components.scheduler.index_for_timestep(t)
sigma_t = components.scheduler.sigmas[step_index]
latents = block_state.latents.double() - sigma_t.double() * block_state.noise_pred.double()
block_state.latents = latents
if block_state.latents.dtype != latents_dtype:
block_state.latents = block_state.latents.to(latents_dtype)
return components, block_state
class MatrixGameWanDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
model_name = "MatrixGameWan"
frame_seq_length = 880
local_attn_size = 6
num_transformer_blocks = 30
def _initialize_kv_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU KV cache for the Wan model.
"""
cache = []
if self.local_attn_size != -1:
# Use the local attention size to compute the KV cache size
kv_cache_size = self.local_attn_size * self.frame_seq_length
else:
# Use the default KV cache size
kv_cache_size = 15 * 1 * self.frame_seq_length # 32760
for _ in range(self.num_transformer_blocks):
cache.append({
"k": torch.zeros((batch_size, kv_cache_size, 12, 128), dtype=dtype, device=device),
"v": torch.zeros((batch_size, kv_cache_size, 12, 128), dtype=dtype, device=device),
"global_end_index": torch.tensor([0], dtype=torch.long, device=device),
"local_end_index": torch.tensor([0], dtype=torch.long, device=device)
})
return cache # always store the clean cache
def _initialize_kv_cache_mouse_and_keyboard(self, batch_size, dtype, device):
"""
Initialize a Per-GPU KV cache for the Wan model.
"""
kv_cache_mouse = []
kv_cache_keyboard = []
if self.local_attn_size != -1:
kv_cache_size = self.local_attn_size
else:
kv_cache_size = 15 * 1
for _ in range(self.num_transformer_blocks):
kv_cache_keyboard.append({
"k": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device),
"v": torch.zeros([batch_size, kv_cache_size, 16, 64], dtype=dtype, device=device),
"global_end_index": torch.tensor([0], dtype=torch.long, device=device),
"local_end_index": torch.tensor([0], dtype=torch.long, device=device)
})
kv_cache_mouse.append({
"k": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device),
"v": torch.zeros([batch_size * self.frame_seq_length, kv_cache_size, 16, 64], dtype=dtype, device=device),
"global_end_index": torch.tensor([0], dtype=torch.long, device=device),
"local_end_index": torch.tensor([0], dtype=torch.long, device=device)
})
return kv_cache_mouse, kv_cache_keyboard # always store the clean cache
def _initialize_crossattn_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU cross-attention cache for the Wan model.
"""
crossattn_cache = []
for _ in range(self.num_transformer_blocks):
crossattn_cache.append({
"k": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device),
"v": torch.zeros([batch_size, 257, 12, 128], dtype=dtype, device=device),
"is_init": False
})
return crossattn_cache
@property
def description(self) -> str:
return (
"Pipeline block that iteratively denoise the latents over `timesteps`. "
"The specific steps with each iteration can be customized with `sub_blocks` attributes"
)
@property
def loop_expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 5.0}),
default_creation_method="from_config",
),
ComponentSpec("scheduler", UniPCMultistepScheduler),
ComponentSpec("transformer", AutoModel),
]
@property
def loop_inputs(self) -> List[InputParam]:
return [
InputParam(
"timesteps",
required=True,
type_hint=torch.Tensor,
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
),
InputParam(
"num_inference_steps",
required=True,
type_hint=int,
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
),
InputParam(
"num_frames_per_block",
required=True,
type_hint=int,
default=3,
),
]
@torch.no_grad()
def __call__(
self, components: ModularPipeline, state: PipelineState
) -> PipelineState:
block_state = self.get_block_state(state)
transformer_dtype = components.transformer.dtype
num_frames_per_block = block_state.num_frames_per_block
latents = block_state.latents.to(transformer_dtype)
image_mask_latents = block_state.image_mask_latents.to(transformer_dtype)
mouse_conditions = block_state.mouse_conditions.unsqueeze(0).to(transformer_dtype)
keyboard_conditions = block_state.keyboard_conditions.unsqueeze(0).to(transformer_dtype)
visual_context = block_state.image_embeds
batch_size, num_channels, num_frames, height, width = latents.shape
output = torch.zeros(
(batch_size, num_channels, num_frames, height, width),
device=latents.device,
dtype=latents.dtype,
)
current_frame_idx = 0
num_blocks = num_frames // num_frames_per_block
kv_cache = self._initialize_kv_cache(batch_size, latents.dtype, latents.device)
kv_cache_mouse, kv_cache_keyboard = self._initialize_kv_cache_mouse_and_keyboard(batch_size, latents.dtype, latents.device)
kv_cache_cross_attn = self._initialize_crossattn_cache(batch_size, latents.dtype, latents.device)
block_state.kv_cache = kv_cache
block_state.kv_cache_mouse = kv_cache_mouse
block_state.kv_cache_keyboard = kv_cache_keyboard
block_state.kv_cache_cross_attn = kv_cache_cross_attn
for _ in range(num_blocks):
block_state.current_frame_idx = current_frame_idx
block_state.image_mask_latents = image_mask_latents[
:, :, current_frame_idx : current_frame_idx + num_frames_per_block
]
cond_idx = 1 + 4 * (current_frame_idx + num_frames_per_block - 1)
block_state.mouse_conditions = mouse_conditions[:, :cond_idx]
block_state.keyboard_conditions = keyboard_conditions[:, :cond_idx]
block_state.latents = latents[
:, :, current_frame_idx : current_frame_idx + num_frames_per_block
]
for i, t in enumerate(block_state.timesteps):
components, block_state = self.loop_step(
components, block_state, i=i, t=t
)
if i < (block_state.num_inference_steps - 1):
t1 = components.scheduler.timesteps[i+1]
block_state.latents = components.scheduler.add_noise(
block_state.latents,
randn_tensor(
block_state.latents.shape,
device=block_state.latents.device,
dtype=block_state.latents.dtype
),
t1.expand(block_state.latents.shape[0])
)
output[
:, :, current_frame_idx : current_frame_idx + num_frames_per_block
] = block_state.latents
components.transformer(
x=block_state.latents,
t=t.expand(block_state.latents.shape[0], block_state.num_frames_per_block) * 0.0,
visual_context=visual_context,
cond_concat=block_state.image_mask_latents,
keyboard_cond=block_state.keyboard_conditions,
mouse_cond=block_state.mouse_conditions,
kv_cache=block_state.kv_cache,
kv_cache_mouse=block_state.kv_cache_mouse,
kv_cache_keyboard=block_state.kv_cache_keyboard,
crossattn_cache=block_state.kv_cache_cross_attn,
current_start=block_state.current_frame_idx * self.frame_seq_length,
num_frames_per_block=block_state.num_frames_per_block,
)[0]
current_frame_idx += num_frames_per_block
block_state.latents = output
self.set_block_state(state, block_state)
return components, state
class MatrixGameWanDenoiseStep(MatrixGameWanDenoiseLoopWrapper):
block_classes = [
MatrixGameWanLoopDenoiser,
MatrixGameWanLoopAfterDenoiser,
]
block_names = ["denoiser", "after_denoiser"]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents. \n"
"Its loop logic is defined in `MatrixGameWanDenoiseLoopWrapper.__call__` method \n"
"At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
" - `MatrixGameWanLoopDenoiser`\n"
" - `MatrixGameWanLoopAfterDenoiser`\n"
"This block supports both text2vid tasks."
)
|