Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!
> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training. > They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token. > They trained on Finemath, Fineweb2, DCLM, TxT360. > Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data. > They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.
Kimi K2 tech report is full of gems as always. Here are my notes on it:
> MuonClip: Pretty crazy how after 70k the training stabilizes and the QK-clip is basically inactive. There is also no loss in perf with QK-clip which is not trivial at all (at small scale but with aggressive threshold). Also a cool explanation of why muon makes the logit explode in appendix E (tl;dr is that muon makes the singular value of the update matrix higher) > Sparsity scaling laws to justify their ratio, they have a very solid training infra that allows the model to be trained at this sparsity level, they could have increased even more but as sparsity increases the training becomes less efficient. > They diminish the number of attention heads to make it more efficient for long context since attention heads are a big bottleneck for long context. They also remove 2 of the 3 "first dense" layers in the dsv3 arch.
With the sparsity and attention heads (divided by 2) they achieve 83% increased flops compared to deepseek v3 arch at 128k.
> Data: Rephrasing is KEY. They do a lot more synthetic data generation and rephrase their corpus to have different styles, for longer documents they do it by chunk. I'm (half) surprised by the fact that ONLY 1 epoch (assuming same number of training tokens I think?) of data rephrased 10 times has better accuracy than 10 epochs of the same data rephrased once. > They do rewriting for Math and Knowledge, for Math they apply the ShallowMath recipe and instruct the model to rephrase in a "learning note" style > They talk about diversity and probably have some internal stuff/eval to test that, as always still a bit unclear for me how to properly measure that.
The infra is also very nice, quick summary: > PP=16 (1F1B schedule, a bit custom), EP=16, zero1 > No FP8 computation but for storage of specific layers, selective recomputation for inexpensive block, activation offloading to CPU
Google just dropped an exciting technical report for the brand-new Gemma3 model! 🚀 Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:
1) Architecture choices: > No more softcaping, replace by QK-Norm > Both Pre AND Post Norm > Wider MLP than Qwen2.5, ~ same depth > SWA with 5:1 and 1024 (very small and cool ablation on the paper!) > No MLA to save KV cache, SWA do the job!
2) Long context > Only increase the rope in the global layer (to 1M) > Confirmation that it's harder to do long context for smol models, no 128k for the 1B > Pretrained with 32k context? seems very high > No yarn nor llama3 like rope extension
3) Distillation > Only keep te first 256 logits for the teacher > Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better) > On policy distillation yeahh (by @agarwl_ et al), not sure if the teacher gap behave the same here, curious if someone have more info?
4) Others > Checkpoint with QAT, that's very cool > RL using improve version of BOND, WARM/WARP good excuse to look at @ramealexandre papers > Only use Zero3, no TP/PP if i understand correctly ? > Training budget relatively similar than gemma2
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!
🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.
🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.
🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.
10 Free Comprehensive Datasets for Supervised Fine-Tuning
High-quality datasets, their size and relevance directly impact the effectiveness of fine-tuning and the models' real-world applications. Among the numerous datasets for different tasks, it can be challenging to choose the most comprehensive dataset that best suits your purposes.
So today, we invite you to explore top 10 free datasets on natural language processing and maths:
1. fka/awesome-chatgpt-prompts proposes a huge variety of prompts that can be used with ChatGPT. Over 700 models were trained on this dataset.
2. HuggingFaceFW/fineweb from Hugging Face includes 15T tokens of cleaned and deduplicated English web data. It’s suitable for LLM training, benchmarking, model validation.
3. HuggingFaceFW/fineweb-2 is an another version of FineWeb with high-quality pretraining data to over 1000 languages.
4. O1-OPEN/OpenO1-SFT with Chinese and English data can be used for Chain-of-Thought activation.
5. yahma/alpaca-cleaned is a curated version of the original Alpaca Dataset released by Stanford.
6. lmsys/lmsys-chat-1m with 1 million real-world conversations with 25 state-of-the-art LLMs offers diverse use cases, like content moderation, safety benchmarks, and training instruction-following models.
7. allenai/dolma from Allen AI includes 3T tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials.
Math datasets:
1. HuggingFaceTB/finemath consists of educational math content and has two versions: 34B tokens and 54B tokens.
Introducing 📐𝐅𝐢𝐧𝐞𝐌𝐚𝐭𝐡: the best public math pre-training dataset with 50B+ tokens! HuggingFaceTB/finemath
Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.
We build the dataset by: 🛠️ carefully extracting math data from Common Crawl; 🔎 iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.
We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.
We hope this helps advance the performance of LLMs on math and reasoning! 🚀 We’re also releasing all the ablation models as well as the evaluation code.
The cleaning process consists of: - Joining the separate splits together / add split column - Converting string messages into list of structs - Removing empty system prompts
Unfortunately the latest benchmark csv files are not yet up to date, there are some gaps in dataset results vs throughput/flop numbers impact the plots.
h/t to @MohamedRashad for making the first timm leaderboard.
Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀
Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face!
We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI.
Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching argilla/notus-7b-v1 building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing argilla/OpenHermesPreferences, one of the largest open preference tuning datasets
After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team.
To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.
As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.
Finally, huge thanks to the Chief Llama Officer @osanseviero for sparking this and being such a great partner during the acquisition process.
Would love to answer any questions you have so feel free to add them below!
28 replies
·
reacted to kargaranamir's
post with 👍over 1 year ago
More details? Stay tuned for our upcoming paper. More data? In the next version, we plan to include additional snapshots of CommonCrawl.
Limitation: Due to the lower frequency of low-resource languages compared to others, there are sometimes only a few sentences available for very low-resource languages. However, the data volume for English in this version stands at 750GB, and the top 200 languages still have a strong presence in our data (see plot attached; we write the index for every 20 languages, meaning the 10th index is the 200th language).
How do Microsoft and Alphabet (Google) results compare?
Microsoft Reports Rising Revenues as A.I. Investments Bear Fruit - 17 % jump in revenue and a 20 % increase in profit for the first three months of the year. - Revenue was $61.9 billion, up from $52.9 billion a year earlier. - Profit hit $21.9 billion, up from $18.3 billion. - More than a fifth of that growth came from its generative A.I. services https://www.nytimes.com/2024/04/25/technology/microsoft-earnings.html
Alphabet’s Revenue Jumps 15% to $80.5 Billion - $80.5 billion in quarterly sales, up 15 % from a year earlier. Profit climbed 36 % to $23.7 billion. - For the first time, a dividend of 20 cents per share - It spent $12 billion on capital expenditures in the first quarter, soaring 91 % from a year earlier. https://www.nytimes.com/2024/04/25/technology/alphabet-earnings.html
Meta’s Open Source Llama 3 Is Already Nipping at OpenAI’s Heels - Wired - "if open source models prove competitive, developers and entrepreneurs may decide to stop paying to access the latest model from OpenAI or Google and use Llama 3 or one of the other increasingly powerful open source models that are popping up." - "Open models appear to be dropping at an impressive clip." https://www.wired.com/story/metas-open-source-llama-3-nipping-at-openais-heels/
Very excited to share the first two official Gemma variants from Google! Today at Google Cloud Next, we announced cutting-edge models for code and research!
First, google/codegemma-release-66152ac7b683e2667abdee11 - a new set of code-focused Gemma models at 2B and 7B, in both pretrained and instruction-tuned variants. These exhibit outstanding performance on academic benchmarks and (in my experience) real-life usage. Read more in the excellent HuggingFace blog: https://huggingface.co/blog/codegemma
Second, (google/recurrentgemma-release-66152cbdd2d6619cb1665b7a), which is based on the outstanding Google DeepMind research in Griffin: https://arxiv.org/abs/2402.19427. RecurrentGemma is a research variant that enables higher throughput and vastly improved memory usage. We are excited about new architectures, especially in the lightweight Gemma sizes, where innovations like RecurrentGemma can scale modern AI to many more use cases.
For details on the launches of these models, check out our launch blog -- and please do not hesitate to send us feedback. We are excited to see what you build with CodeGemma and RecurrentGemma!
Huge thanks to the Hugging Face team for helping ensure that these models work flawlessly in the Hugging Face ecosystem at launch!