import torch import torch.nn.functional as F import numpy as np import esm from tqdm import tqdm import os from datetime import datetime class EmbeddingToSequenceConverter: """ Convert ESM embeddings back to amino acid sequences using real ESM2 token embeddings. """ def __init__(self, device='cuda'): self.device = device # Load ESM model print("Loading ESM model for sequence decoding...") self.model, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D() self.model = self.model.to(device) self.model.eval() # Get vocabulary self.vocab = self.alphabet.standard_toks self.vocab_list = [token for token in self.vocab if token not in ['', '', '', '', '']] # Pre-compute token embeddings for nearest neighbor search self._precompute_token_embeddings() print("✓ ESM model loaded for sequence decoding") def _precompute_token_embeddings(self): """ Pre-compute embeddings for all tokens in the vocabulary using real ESM2 embeddings. """ print("Pre-computing token embeddings from ESM2 model...") # Use standard amino acids standard_aas = 'ACDEFGHIKLMNPQRSTVWY' self.token_list = list(standard_aas) # Extract real embeddings from ESM2 model with torch.no_grad(): # Get token indices for each amino acid aa_tokens = [] for aa in standard_aas: try: token_idx = self.alphabet.get_idx(aa) aa_tokens.append(token_idx) except: print(f"Warning: Could not find token for amino acid {aa}") # Fallback to a default token aa_tokens.append(0) # Convert to tensor aa_tokens = torch.tensor(aa_tokens, device=self.device) # Extract embeddings from ESM2's embedding layer # Note: ESM2 uses a different embedding structure, so we'll use the model's forward pass # Create dummy sequences for each amino acid dummy_sequences = [(f"aa_{i}", aa) for i, aa in enumerate(standard_aas)] # Get embeddings using the same method as the encoder converter = self.alphabet.get_batch_converter() _, _, tokens = converter(dummy_sequences) tokens = tokens.to(self.device) # Get embeddings from layer 33 (same as encoder) with torch.no_grad(): out = self.model(tokens, repr_layers=[33], return_contacts=False) reps = out['representations'][33] # [B, L+2, D] # Extract per-residue embeddings (remove CLS and EOS tokens) token_embeddings = [] for i, (_, seq) in enumerate(dummy_sequences): L = len(seq) emb = reps[i, 1:1+L, :] # Remove CLS and EOS tokens # Take the first position embedding for each amino acid token_embeddings.append(emb[0]) self.token_embeddings = torch.stack(token_embeddings) print(f"✓ Pre-computed embeddings for {len(self.token_embeddings)} tokens") print(f" Embedding shape: {self.token_embeddings.shape}") def embedding_to_sequence(self, embedding, method='diverse', temperature=0.5): """ Convert a single embedding back to amino acid sequence. Args: embedding: [seq_len, embed_dim] tensor method: 'diverse', 'nearest_neighbor', or 'random' temperature: Temperature for diverse sampling (lower = more diverse) Returns: sequence: string of amino acids """ if method == 'diverse': return self._diverse_decode(embedding, temperature) elif method == 'nearest_neighbor': return self._nearest_neighbor_decode(embedding) elif method == 'random': return self._random_decode(embedding) else: raise ValueError(f"Unknown method: {method}") def _diverse_decode(self, embedding, temperature=0.5): """ Decode using diverse sampling with temperature control. """ # Ensure both tensors are on the same device embedding = embedding.to(self.device) token_embeddings = self.token_embeddings.to(self.device) # Compute cosine similarity between embedding and all token embeddings embedding_norm = F.normalize(embedding, dim=-1) # [seq_len, embed_dim] token_embeddings_norm = F.normalize(token_embeddings, dim=-1) # [vocab_size, embed_dim] # Compute similarities similarities = torch.mm(embedding_norm, token_embeddings_norm.t()) # [seq_len, vocab_size] # Apply temperature to increase diversity similarities = similarities / temperature # Convert to probabilities probs = F.softmax(similarities, dim=-1) # Sample from the distribution sampled_indices = torch.multinomial(probs, 1).squeeze(-1) # Convert to sequence sequence = ''.join([self.token_list[idx] for idx in sampled_indices.cpu().numpy()]) return sequence def _nearest_neighbor_decode(self, embedding): """ Decode using nearest neighbor search in token embedding space. """ # Ensure both tensors are on the same device embedding = embedding.to(self.device) token_embeddings = self.token_embeddings.to(self.device) # Compute cosine similarity between embedding and all token embeddings embedding_norm = F.normalize(embedding, dim=-1) # [seq_len, embed_dim] token_embeddings_norm = F.normalize(token_embeddings, dim=-1) # [vocab_size, embed_dim] # Compute similarities similarities = torch.mm(embedding_norm, token_embeddings_norm.t()) # [seq_len, vocab_size] # Find nearest neighbors nearest_indices = torch.argmax(similarities, dim=-1) # [seq_len] # Convert to sequence sequence = ''.join([self.token_list[idx] for idx in nearest_indices.cpu().numpy()]) return sequence def _random_decode(self, embedding): """ Decode using random sampling (fallback method). """ seq_len = embedding.shape[0] sequence = ''.join(np.random.choice(self.token_list, seq_len)) return sequence def batch_embedding_to_sequences(self, embeddings, method='diverse', temperature=0.5): """ Convert batch of embeddings to sequences. Args: embeddings: [batch_size, seq_len, embed_dim] tensor method: decoding method temperature: Temperature for diverse sampling Returns: sequences: list of strings """ sequences = [] for i in tqdm(range(len(embeddings)), desc="Converting embeddings to sequences"): embedding = embeddings[i] sequence = self.embedding_to_sequence(embedding, method=method, temperature=temperature) sequences.append(sequence) return sequences def validate_sequence(self, sequence): """ Validate if a sequence contains valid amino acids. """ valid_aas = set('ACDEFGHIKLMNPQRSTVWY') return all(aa in valid_aas for aa in sequence) def filter_valid_sequences(self, sequences): """ Filter out sequences with invalid amino acids. """ valid_sequences = [] for seq in sequences: if self.validate_sequence(seq): valid_sequences.append(seq) else: print(f"Warning: Invalid sequence found: {seq}") return valid_sequences def main(): """ Decode all CFG-generated peptide embeddings to sequences and analyze distribution. Uses the best trained model (loss: 0.017183, step: 53). """ print("=== CFG-Generated Peptide Sequence Decoder (Best Model) ===") # Initialize converter converter = EmbeddingToSequenceConverter() # Get today's date for filename today = datetime.now().strftime('%Y%m%d') # Load all CFG-generated embeddings (using best model) cfg_files = { 'No CFG (0.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_no_cfg_{today}.pt', 'Weak CFG (3.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_weak_cfg_{today}.pt', 'Strong CFG (7.5)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_strong_cfg_{today}.pt', 'Very Strong CFG (15.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_very_strong_cfg_{today}.pt' } all_results = {} for cfg_name, file_path in cfg_files.items(): print(f"\n{'='*50}") print(f"Processing {cfg_name}...") print(f"Loading: {file_path}") try: # Load embeddings embeddings = torch.load(file_path, map_location='cpu') print(f"✓ Loaded {len(embeddings)} embeddings, shape: {embeddings.shape}") # Decode to sequences using diverse method print(f"Decoding sequences...") sequences = converter.batch_embedding_to_sequences(embeddings, method='diverse', temperature=0.5) # Filter valid sequences valid_sequences = converter.filter_valid_sequences(sequences) print(f"✓ Valid sequences: {len(valid_sequences)}/{len(sequences)}") # Store results all_results[cfg_name] = { 'sequences': valid_sequences, 'total': len(sequences), 'valid': len(valid_sequences) } # Show sample sequences print(f"\nSample sequences ({cfg_name}):") for i, seq in enumerate(valid_sequences[:5]): print(f" {i+1}: {seq}") except Exception as e: print(f"❌ Error processing {file_path}: {e}") all_results[cfg_name] = {'sequences': [], 'total': 0, 'valid': 0} # Analysis and comparison print(f"\n{'='*60}") print("CFG ANALYSIS SUMMARY") print(f"{'='*60}") for cfg_name, results in all_results.items(): sequences = results['sequences'] if sequences: # Calculate sequence statistics lengths = [len(seq) for seq in sequences] avg_length = np.mean(lengths) std_length = np.std(lengths) # Calculate amino acid composition all_aas = ''.join(sequences) aa_counts = {} for aa in 'ACDEFGHIKLMNPQRSTVWY': aa_counts[aa] = all_aas.count(aa) # Calculate diversity (unique sequences) unique_sequences = len(set(sequences)) diversity_ratio = unique_sequences / len(sequences) print(f"\n{cfg_name}:") print(f" Total sequences: {results['total']}") print(f" Valid sequences: {results['valid']}") print(f" Unique sequences: {unique_sequences}") print(f" Diversity ratio: {diversity_ratio:.3f}") print(f" Avg length: {avg_length:.1f} ± {std_length:.1f}") print(f" Length range: {min(lengths)}-{max(lengths)}") # Show top amino acids sorted_aas = sorted(aa_counts.items(), key=lambda x: x[1], reverse=True) print(f" Top 5 AAs: {', '.join([f'{aa}({count})' for aa, count in sorted_aas[:5]])}") # Create output directory if it doesn't exist output_dir = '/data2/edwardsun/decoded_sequences' os.makedirs(output_dir, exist_ok=True) # Save sequences to file with date output_file = os.path.join(output_dir, f"decoded_sequences_{cfg_name.lower().replace(' ', '_').replace('(', '').replace(')', '').replace('.', '')}_{today}.txt") with open(output_file, 'w') as f: f.write(f"# Decoded sequences from {cfg_name}\n") f.write(f"# Total: {results['total']}, Valid: {results['valid']}, Unique: {unique_sequences}\n") f.write(f"# Generated from best model (loss: 0.017183, step: 53)\n\n") for i, seq in enumerate(sequences): f.write(f"seq_{i+1:03d}\t{seq}\n") print(f" ✓ Saved to: {output_file}") # Overall comparison print(f"\n{'='*60}") print("OVERALL COMPARISON") print(f"{'='*60}") cfg_names = list(all_results.keys()) valid_counts = [all_results[name]['valid'] for name in cfg_names] unique_counts = [len(set(all_results[name]['sequences'])) for name in cfg_names] print(f"Valid sequences: {dict(zip(cfg_names, valid_counts))}") print(f"Unique sequences: {dict(zip(cfg_names, unique_counts))}") # Find most diverse and most similar if all(valid_counts): diversity_ratios = [unique_counts[i]/valid_counts[i] for i in range(len(valid_counts))] most_diverse = cfg_names[diversity_ratios.index(max(diversity_ratios))] least_diverse = cfg_names[diversity_ratios.index(min(diversity_ratios))] print(f"\nMost diverse: {most_diverse} (ratio: {max(diversity_ratios):.3f})") print(f"Least diverse: {least_diverse} (ratio: {min(diversity_ratios):.3f})") print(f"\n✓ Decoding complete! Check the output files for detailed sequences.") if __name__ == "__main__": main()