Add v1.1 model card
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,198 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: cc0-1.0
         | 
| 3 | 
            +
            base_model: mlx-community/Qwen2.5-Coder-7B-Instruct-4bit
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - gguf
         | 
| 6 | 
            +
            - cybersecurity
         | 
| 7 | 
            +
            - nist
         | 
| 8 | 
            +
            - security-controls
         | 
| 9 | 
            +
            - compliance
         | 
| 10 | 
            +
            - fine-tuned
         | 
| 11 | 
            +
            - llama-cpp
         | 
| 12 | 
            +
            language:
         | 
| 13 | 
            +
            - en
         | 
| 14 | 
            +
            quantized_by: ethanolivertroy
         | 
| 15 | 
            +
            ---
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # HackIDLE-NIST-Coder v1.1 (GGUF)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            **The most comprehensive NIST cybersecurity model** in GGUF format - Compatible with llama.cpp, Ollama, LM Studio, and text-generation-webui.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            ## Model Overview
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            Fine-tuned on 530,912 examples from 596 NIST publications. Version 1.1 includes:
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            - **+7,206 training examples** (530,912 total)
         | 
| 26 | 
            +
            - **+28 new documents** (596 NIST publications)
         | 
| 27 | 
            +
            - **CSWP series**: CSF 2.0, Zero Trust Architecture, Post-Quantum Cryptography
         | 
| 28 | 
            +
            - **Improved quality**: Fixed 6,150 malformed DOI links, 0 broken link markers
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            ## Available Quantizations
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            | Quantization | Size | Use Case | Description |
         | 
| 33 | 
            +
            |--------------|------|----------|-------------|
         | 
| 34 | 
            +
            | **F16** | ~14 GB | Reference Quality | Full precision, best quality |
         | 
| 35 | 
            +
            | **Q8_0** | ~7.5 GB | High Quality | Minimal quality loss |
         | 
| 36 | 
            +
            | **Q5_K_M** | ~5.1 GB | Balanced | Good quality/size trade-off |
         | 
| 37 | 
            +
            | **Q4_K_M** | ~4.4 GB | Recommended | Best speed/quality balance |
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            **Recommended**: Start with **Q4_K_M** for best overall performance.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ## Training Data (v1.1)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            **Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            **Coverage:**
         | 
| 46 | 
            +
            - **FIPS**: Cryptographic standards
         | 
| 47 | 
            +
            - **SP 800**: Security guidelines and controls
         | 
| 48 | 
            +
            - **SP 1800**: Practice guides
         | 
| 49 | 
            +
            - **IR**: Technical reports
         | 
| 50 | 
            +
            - **CSWP**: White Papers (CSF 2.0, Zero Trust, PQC, IoT, Privacy) β¨ NEW
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            **Stats**: 530,912 examples β’ 596 documents β’ 61,480 working references
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            ## Installation
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ### Ollama
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ```bash
         | 
| 59 | 
            +
            # Pull from Ollama registry
         | 
| 60 | 
            +
            ollama pull etgohome/hackidle-nist-coder:v1.1
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            # Or create from GGUF
         | 
| 63 | 
            +
            ollama create hackidle-nist-coder -f Modelfile
         | 
| 64 | 
            +
            ```
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            ### LM Studio
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            1. Open LM Studio
         | 
| 69 | 
            +
            2. Search for "hackidle-nist-coder"
         | 
| 70 | 
            +
            3. Download Q4_K_M or Q5_K_M quantization
         | 
| 71 | 
            +
            4. Load and chat
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ### llama.cpp
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            ```bash
         | 
| 76 | 
            +
            # Clone llama.cpp
         | 
| 77 | 
            +
            git clone https://github.com/ggerganov/llama.cpp
         | 
| 78 | 
            +
            cd llama.cpp && make
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            # Download model (Q4_K_M recommended)
         | 
| 81 | 
            +
            wget https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF/resolve/main/hackidle-nist-coder-v1.1-q4_k_m.gguf
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            # Run inference
         | 
| 84 | 
            +
            ./llama-cli -m hackidle-nist-coder-v1.1-q4_k_m.gguf -p "What is Zero Trust Architecture?"
         | 
| 85 | 
            +
            ```
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            ### text-generation-webui
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            1. Place GGUF file in `models/` directory
         | 
| 90 | 
            +
            2. Select model in UI
         | 
| 91 | 
            +
            3. Load and chat
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            ## Usage Examples
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            ### Ollama
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            ```bash
         | 
| 98 | 
            +
            ollama run etgohome/hackidle-nist-coder:v1.1 "Explain the CSF 2.0 GOVERN function"
         | 
| 99 | 
            +
            ```
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            ### Python (llama-cpp-python)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ```python
         | 
| 104 | 
            +
            from llama_cpp import Llama
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            llm = Llama(
         | 
| 107 | 
            +
                model_path="hackidle-nist-coder-v1.1-q4_k_m.gguf",
         | 
| 108 | 
            +
                n_ctx=4096,
         | 
| 109 | 
            +
                n_threads=8
         | 
| 110 | 
            +
            )
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            response = llm("What are the core principles of Zero Trust Architecture in SP 800-207?",
         | 
| 113 | 
            +
                           max_tokens=500)
         | 
| 114 | 
            +
            print(response['choices'][0]['text'])
         | 
| 115 | 
            +
            ```
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            ## Model Capabilities
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            Trained on comprehensive NIST content:
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            β
 **Security Controls** (SP 800-53)
         | 
| 122 | 
            +
            β
 **CSF 2.0** with GOVERN function
         | 
| 123 | 
            +
            β
 **Zero Trust Architecture** (SP 800-207)
         | 
| 124 | 
            +
            β
 **Risk Management Framework** (RMF)
         | 
| 125 | 
            +
            β
 **Cloud Security** (SP 800-145, 800-146)
         | 
| 126 | 
            +
            β
 **FIPS Cryptography** standards
         | 
| 127 | 
            +
            β
 **Post-Quantum Cryptography** migration
         | 
| 128 | 
            +
            β
 **Privacy Engineering**
         | 
| 129 | 
            +
            β
 **Supply Chain Risk Management**
         | 
| 130 | 
            +
            β
 **IoT Cybersecurity**
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            ## What's New in v1.1
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            **Added Content:**
         | 
| 135 | 
            +
            - CSF 2.0 (Cybersecurity Framework 2.0)
         | 
| 136 | 
            +
            - Zero Trust Architecture planning guidance
         | 
| 137 | 
            +
            - Post-Quantum Cryptography recommendations
         | 
| 138 | 
            +
            - IoT security and labeling
         | 
| 139 | 
            +
            - Privacy Framework v1.0
         | 
| 140 | 
            +
            - Supply chain risk management case studies
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            **Quality Improvements:**
         | 
| 143 | 
            +
            - Fixed 6,150 malformed DOI links
         | 
| 144 | 
            +
            - Removed 202 broken link markers
         | 
| 145 | 
            +
            - Validated 124,946 total links
         | 
| 146 | 
            +
            - Clean training data
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            ## System Requirements
         | 
| 149 | 
            +
             | 
| 150 | 
            +
            | Quantization | RAM Required | CPU/GPU |
         | 
| 151 | 
            +
            |--------------|-------------|---------|
         | 
| 152 | 
            +
            | Q4_K_M | 6 GB | CPU or GPU |
         | 
| 153 | 
            +
            | Q5_K_M | 7 GB | CPU or GPU |
         | 
| 154 | 
            +
            | Q8_0 | 10 GB | CPU or GPU |
         | 
| 155 | 
            +
            | F16 | 16 GB | GPU recommended |
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            ## Other Formats
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            - **MLX**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit) (Apple Silicon)
         | 
| 160 | 
            +
            - **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            ## Limitations
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            - Training data current as of October 2025
         | 
| 165 | 
            +
            - May not reflect NIST publications released after training
         | 
| 166 | 
            +
            - 54.2% of references are broken links (cataloged for recovery)
         | 
| 167 | 
            +
            - Optimized for NIST-specific cybersecurity questions
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            ## Citation
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            ```bibtex
         | 
| 172 | 
            +
            @misc{hackidle-nist-coder-v1.1-gguf,
         | 
| 173 | 
            +
              title={HackIDLE-NIST-Coder: NIST Cybersecurity Expert Model},
         | 
| 174 | 
            +
              author={Troy, Ethan Oliver},
         | 
| 175 | 
            +
              year={2025},
         | 
| 176 | 
            +
              version={1.1},
         | 
| 177 | 
            +
              format={GGUF},
         | 
| 178 | 
            +
              url={https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF}
         | 
| 179 | 
            +
            }
         | 
| 180 | 
            +
            ```
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            ## License
         | 
| 183 | 
            +
             | 
| 184 | 
            +
            CC0 1.0 Universal (Public Domain) - All NIST publications are in the public domain.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            ## Acknowledgments
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            - NIST Computer Security Resource Center
         | 
| 189 | 
            +
            - Qwen2.5-Coder base model (Alibaba Cloud)
         | 
| 190 | 
            +
            - llama.cpp quantization (Georgi Gerganov)
         | 
| 191 | 
            +
            - MLX framework (Apple)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            ---
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            **Version**: 1.1
         | 
| 196 | 
            +
            **Release Date**: October 2025
         | 
| 197 | 
            +
            **Training Dataset**: [nist-cybersecurity-training v1.1](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
         | 
| 198 | 
            +
            **Format**: GGUF (compatible with llama.cpp ecosystem)
         | 
