fnlp
/

fdugyt commited on
Commit
6171706
·
verified ·
1 Parent(s): 899d877

Upload all files from current directory

Browse files
Files changed (1) hide show
  1. README.md +0 -67
README.md CHANGED
@@ -1,70 +1,3 @@
1
  ---
2
  license: apache-2.0
3
  ---
4
-
5
- # **Introduction**
6
-
7
- **`XY-Tokenizer`** is a speech codec that simultaneously models both semantic and acoustic aspects of speech, converting audio into discrete tokens and decoding them back to high-quality audio. It achieves efficient speech representation at only 1kbps with RVQ8 quantization at 12.5Hz frame rate.
8
-
9
- - **Paper:** [Read on arXiv](https://arxiv.org/abs/2506.23325)
10
- - **Source Code:**
11
- - [GitHub Repo](https://github.com/OpenMOSS/MOSS-TTSD/tree/main/XY_Tokenizer)
12
- - [Hugging Face Repo](https://huggingface.co/spaces/fnlp/MOSS-TTSD/tree/main/XY_Tokenizer)
13
-
14
- ## 📚 Related Project: **[MOSS-TTSD](https://huggingface.co/fnlp/MOSS-TTSD-v0.5)**
15
-
16
- **`XY-Tokenizer`** serves as the underlying neural codec for **`MOSS-TTSD`**, our 1.7B Audio Language Model. \
17
- Explore **`MOSS-TTSD`** for advanced text-to-speech and other audio generation tasks on [GitHub](https://github.com/OpenMOSS/MOSS-TTSD), [Blog](http://www.open-moss.com/en/moss-ttsd/), [博客](https://www.open-moss.com/cn/moss-ttsd/), and [Space Demo](https://huggingface.co/spaces/fnlp/MOSS-TTSD).
18
-
19
- ## ✨ Features
20
-
21
- - **Dual-channel modeling**: Simultaneously captures semantic meaning and acoustic details
22
- - **Efficient representation**: 1kbps bitrate with RVQ8 quantization at 12.5Hz
23
- - **High-quality audio tokenization**: Convert speech to discrete tokens and back with minimal quality loss
24
- - **Long audio support**: Process audio files longer than 30 seconds using chunking with overlap
25
- - **Batch processing**: Efficiently process multiple audio files in batches
26
- - **24kHz output**: Generate high-quality 24kHz audio output
27
-
28
-
29
- ## 🚀 Installation
30
-
31
- ```bash
32
- git clone https://github.com/OpenMOSS/MOSS-TTSD.git
33
- cd MOSS-TTSD
34
- conda create -n xy_tokenizer python=3.10 -y && conda activate xy_tokenizer
35
- pip install -r XY_Tokenizer/requirements.txt
36
- ```
37
-
38
- ## 💻 Quick Start
39
-
40
- Here's how to use **`XY-Tokenizer`** with `transformers` to encode an audio file into discrete tokens and decode it back into a waveform.
41
-
42
- ```python
43
- import torchaudio
44
- from transformers import AutoFeatureExtractor, AutoModel
45
-
46
- # 1. Load the feature extractor and the codec model
47
- model_id = "fnlp/XY_Tokenizer_TTSD_V0"
48
- feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, trust_remote_code=True)
49
- codec = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval().to("cuda")
50
-
51
- # 2. Load and preprocess the audio
52
- # The model expects a 16kHz sample rate.
53
- wav_form, sampling_rate = torchaudio.load("examples/m1.wav")
54
- if sampling_rate != 16000:
55
- wav_form = torchaudio.functional.resample(wav_form, orig_freq=sampling_rate, new_freq=16000)
56
-
57
- # 3. Encode the audio into discrete codes
58
- input_features = feature_extractor(wav_form, sampling_rate=16000, return_attention_mask=True, return_tensors="pt")
59
- # The 'code' dictionary contains the discrete audio codes
60
- code = codec.encode(input_features)
61
- print(code)
62
-
63
- # 4. Decode the codes back to an audio waveform
64
- # The output is high-quality 24kHz audio.
65
- output_wav = codec.decode(code["audio_codes"], overlap_seconds=10)
66
-
67
- # 5. Save the reconstructed audio
68
- for i, audio in enumerate(output_wav["audio_values"]):
69
- torchaudio.save(f"audio_{i}.wav", audio.cpu(), 24000)
70
- ```
 
1
  ---
2
  license: apache-2.0
3
  ---