add model
Browse files- bert/config.json +27 -0
- bert/pytorch_model.bin +3 -0
- model_index.json +25 -0
- modeling_latent_diffusion.py +965 -0
- noise_scheduler/scheduler_config.json +9 -0
- tokenizer/special_tokens_map.json +7 -0
- tokenizer/tokenizer_config.json +16 -0
- tokenizer/vocab.txt +0 -0
- unet/config.json +38 -0
- unet/diffusion_model.pt +3 -0
- vqvae/config.json +25 -0
- vqvae/diffusion_model.pt +3 -0
bert/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "../fusing-models/bert/",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"activation_function": "gelu",
|
| 5 |
+
"architectures": [
|
| 6 |
+
"LDMBertModel"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.0,
|
| 9 |
+
"classifier_dropout": 0.0,
|
| 10 |
+
"d_model": 1280,
|
| 11 |
+
"dropout": 0.1,
|
| 12 |
+
"encoder_attention_heads": 8,
|
| 13 |
+
"encoder_ffn_dim": 5120,
|
| 14 |
+
"encoder_layerdrop": 0.0,
|
| 15 |
+
"encoder_layers": 32,
|
| 16 |
+
"head_dim": 64,
|
| 17 |
+
"init_std": 0.02,
|
| 18 |
+
"max_position_embeddings": 77,
|
| 19 |
+
"model_type": "ldmbert",
|
| 20 |
+
"num_hidden_layers": 32,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"scale_embedding": false,
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.20.0.dev0",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 30522
|
| 27 |
+
}
|
bert/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b33de66bbe4f4a28993bf2620f27252ebbfa4ef9a7e4dfb967ad093b4578c5eb
|
| 3 |
+
size 2328112821
|
model_index.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "LatentDiffusion",
|
| 3 |
+
"_diffusers_version": "0.0.1",
|
| 4 |
+
"_module": "modeling_latent_diffusion.py",
|
| 5 |
+
"bert": [
|
| 6 |
+
"transformers",
|
| 7 |
+
"LDMBertModel"
|
| 8 |
+
],
|
| 9 |
+
"noise_scheduler": [
|
| 10 |
+
"diffusers",
|
| 11 |
+
"GaussianDDPMScheduler"
|
| 12 |
+
],
|
| 13 |
+
"tokenizer": [
|
| 14 |
+
"transformers",
|
| 15 |
+
"BertTokenizer"
|
| 16 |
+
],
|
| 17 |
+
"unet": [
|
| 18 |
+
"diffusers",
|
| 19 |
+
"UNetLDMModel"
|
| 20 |
+
],
|
| 21 |
+
"vqvae": [
|
| 22 |
+
"modeling_latent_diffusion",
|
| 23 |
+
"AutoencoderKL"
|
| 24 |
+
]
|
| 25 |
+
}
|
modeling_latent_diffusion.py
ADDED
|
@@ -0,0 +1,965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tqdm
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
|
| 9 |
+
from diffusers import DiffusionPipeline
|
| 10 |
+
from diffusers.configuration_utils import ConfigMixin
|
| 11 |
+
from diffusers.modeling_utils import ModelMixin
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 15 |
+
"""
|
| 16 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 17 |
+
From Fairseq.
|
| 18 |
+
Build sinusoidal embeddings.
|
| 19 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 20 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 21 |
+
"""
|
| 22 |
+
assert len(timesteps.shape) == 1
|
| 23 |
+
|
| 24 |
+
half_dim = embedding_dim // 2
|
| 25 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 26 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 27 |
+
emb = emb.to(device=timesteps.device)
|
| 28 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 29 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 30 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 31 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 32 |
+
return emb
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def nonlinearity(x):
|
| 36 |
+
# swish
|
| 37 |
+
return x * torch.sigmoid(x)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def Normalize(in_channels):
|
| 41 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Upsample(nn.Module):
|
| 45 |
+
def __init__(self, in_channels, with_conv):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.with_conv = with_conv
|
| 48 |
+
if self.with_conv:
|
| 49 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 53 |
+
if self.with_conv:
|
| 54 |
+
x = self.conv(x)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class Downsample(nn.Module):
|
| 59 |
+
def __init__(self, in_channels, with_conv):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.with_conv = with_conv
|
| 62 |
+
if self.with_conv:
|
| 63 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 64 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
| 65 |
+
|
| 66 |
+
def forward(self, x):
|
| 67 |
+
if self.with_conv:
|
| 68 |
+
pad = (0, 1, 0, 1)
|
| 69 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 70 |
+
x = self.conv(x)
|
| 71 |
+
else:
|
| 72 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class ResnetBlock(nn.Module):
|
| 77 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.in_channels = in_channels
|
| 80 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 81 |
+
self.out_channels = out_channels
|
| 82 |
+
self.use_conv_shortcut = conv_shortcut
|
| 83 |
+
|
| 84 |
+
self.norm1 = Normalize(in_channels)
|
| 85 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 86 |
+
if temb_channels > 0:
|
| 87 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
| 88 |
+
self.norm2 = Normalize(out_channels)
|
| 89 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 90 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 91 |
+
if self.in_channels != self.out_channels:
|
| 92 |
+
if self.use_conv_shortcut:
|
| 93 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
| 94 |
+
else:
|
| 95 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 96 |
+
|
| 97 |
+
def forward(self, x, temb):
|
| 98 |
+
h = x
|
| 99 |
+
h = self.norm1(h)
|
| 100 |
+
h = nonlinearity(h)
|
| 101 |
+
h = self.conv1(h)
|
| 102 |
+
|
| 103 |
+
if temb is not None:
|
| 104 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
| 105 |
+
|
| 106 |
+
h = self.norm2(h)
|
| 107 |
+
h = nonlinearity(h)
|
| 108 |
+
h = self.dropout(h)
|
| 109 |
+
h = self.conv2(h)
|
| 110 |
+
|
| 111 |
+
if self.in_channels != self.out_channels:
|
| 112 |
+
if self.use_conv_shortcut:
|
| 113 |
+
x = self.conv_shortcut(x)
|
| 114 |
+
else:
|
| 115 |
+
x = self.nin_shortcut(x)
|
| 116 |
+
|
| 117 |
+
return x + h
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class AttnBlock(nn.Module):
|
| 121 |
+
def __init__(self, in_channels):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.in_channels = in_channels
|
| 124 |
+
|
| 125 |
+
self.norm = Normalize(in_channels)
|
| 126 |
+
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 127 |
+
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 128 |
+
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 129 |
+
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 130 |
+
|
| 131 |
+
def forward(self, x):
|
| 132 |
+
h_ = x
|
| 133 |
+
h_ = self.norm(h_)
|
| 134 |
+
q = self.q(h_)
|
| 135 |
+
k = self.k(h_)
|
| 136 |
+
v = self.v(h_)
|
| 137 |
+
|
| 138 |
+
# compute attention
|
| 139 |
+
b, c, h, w = q.shape
|
| 140 |
+
q = q.reshape(b, c, h * w)
|
| 141 |
+
q = q.permute(0, 2, 1) # b,hw,c
|
| 142 |
+
k = k.reshape(b, c, h * w) # b,c,hw
|
| 143 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 144 |
+
w_ = w_ * (int(c) ** (-0.5))
|
| 145 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 146 |
+
|
| 147 |
+
# attend to values
|
| 148 |
+
v = v.reshape(b, c, h * w)
|
| 149 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
| 150 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 151 |
+
h_ = h_.reshape(b, c, h, w)
|
| 152 |
+
|
| 153 |
+
h_ = self.proj_out(h_)
|
| 154 |
+
|
| 155 |
+
return x + h_
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class Model(nn.Module):
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
*,
|
| 162 |
+
ch,
|
| 163 |
+
out_ch,
|
| 164 |
+
ch_mult=(1, 2, 4, 8),
|
| 165 |
+
num_res_blocks,
|
| 166 |
+
attn_resolutions,
|
| 167 |
+
dropout=0.0,
|
| 168 |
+
resamp_with_conv=True,
|
| 169 |
+
in_channels,
|
| 170 |
+
resolution,
|
| 171 |
+
use_timestep=True,
|
| 172 |
+
):
|
| 173 |
+
super().__init__()
|
| 174 |
+
self.ch = ch
|
| 175 |
+
self.temb_ch = self.ch * 4
|
| 176 |
+
self.num_resolutions = len(ch_mult)
|
| 177 |
+
self.num_res_blocks = num_res_blocks
|
| 178 |
+
self.resolution = resolution
|
| 179 |
+
self.in_channels = in_channels
|
| 180 |
+
|
| 181 |
+
self.use_timestep = use_timestep
|
| 182 |
+
if self.use_timestep:
|
| 183 |
+
# timestep embedding
|
| 184 |
+
self.temb = nn.Module()
|
| 185 |
+
self.temb.dense = nn.ModuleList(
|
| 186 |
+
[
|
| 187 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
| 188 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
| 189 |
+
]
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# downsampling
|
| 193 |
+
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
| 194 |
+
|
| 195 |
+
curr_res = resolution
|
| 196 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 197 |
+
self.down = nn.ModuleList()
|
| 198 |
+
for i_level in range(self.num_resolutions):
|
| 199 |
+
block = nn.ModuleList()
|
| 200 |
+
attn = nn.ModuleList()
|
| 201 |
+
block_in = ch * in_ch_mult[i_level]
|
| 202 |
+
block_out = ch * ch_mult[i_level]
|
| 203 |
+
for i_block in range(self.num_res_blocks):
|
| 204 |
+
block.append(
|
| 205 |
+
ResnetBlock(
|
| 206 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
| 207 |
+
)
|
| 208 |
+
)
|
| 209 |
+
block_in = block_out
|
| 210 |
+
if curr_res in attn_resolutions:
|
| 211 |
+
attn.append(AttnBlock(block_in))
|
| 212 |
+
down = nn.Module()
|
| 213 |
+
down.block = block
|
| 214 |
+
down.attn = attn
|
| 215 |
+
if i_level != self.num_resolutions - 1:
|
| 216 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 217 |
+
curr_res = curr_res // 2
|
| 218 |
+
self.down.append(down)
|
| 219 |
+
|
| 220 |
+
# middle
|
| 221 |
+
self.mid = nn.Module()
|
| 222 |
+
self.mid.block_1 = ResnetBlock(
|
| 223 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 224 |
+
)
|
| 225 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 226 |
+
self.mid.block_2 = ResnetBlock(
|
| 227 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# upsampling
|
| 231 |
+
self.up = nn.ModuleList()
|
| 232 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 233 |
+
block = nn.ModuleList()
|
| 234 |
+
attn = nn.ModuleList()
|
| 235 |
+
block_out = ch * ch_mult[i_level]
|
| 236 |
+
skip_in = ch * ch_mult[i_level]
|
| 237 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 238 |
+
if i_block == self.num_res_blocks:
|
| 239 |
+
skip_in = ch * in_ch_mult[i_level]
|
| 240 |
+
block.append(
|
| 241 |
+
ResnetBlock(
|
| 242 |
+
in_channels=block_in + skip_in,
|
| 243 |
+
out_channels=block_out,
|
| 244 |
+
temb_channels=self.temb_ch,
|
| 245 |
+
dropout=dropout,
|
| 246 |
+
)
|
| 247 |
+
)
|
| 248 |
+
block_in = block_out
|
| 249 |
+
if curr_res in attn_resolutions:
|
| 250 |
+
attn.append(AttnBlock(block_in))
|
| 251 |
+
up = nn.Module()
|
| 252 |
+
up.block = block
|
| 253 |
+
up.attn = attn
|
| 254 |
+
if i_level != 0:
|
| 255 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 256 |
+
curr_res = curr_res * 2
|
| 257 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 258 |
+
|
| 259 |
+
# end
|
| 260 |
+
self.norm_out = Normalize(block_in)
|
| 261 |
+
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
| 262 |
+
|
| 263 |
+
def forward(self, x, t=None):
|
| 264 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
| 265 |
+
|
| 266 |
+
if self.use_timestep:
|
| 267 |
+
# timestep embedding
|
| 268 |
+
assert t is not None
|
| 269 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 270 |
+
temb = self.temb.dense[0](temb)
|
| 271 |
+
temb = nonlinearity(temb)
|
| 272 |
+
temb = self.temb.dense[1](temb)
|
| 273 |
+
else:
|
| 274 |
+
temb = None
|
| 275 |
+
|
| 276 |
+
# downsampling
|
| 277 |
+
hs = [self.conv_in(x)]
|
| 278 |
+
for i_level in range(self.num_resolutions):
|
| 279 |
+
for i_block in range(self.num_res_blocks):
|
| 280 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 281 |
+
if len(self.down[i_level].attn) > 0:
|
| 282 |
+
h = self.down[i_level].attn[i_block](h)
|
| 283 |
+
hs.append(h)
|
| 284 |
+
if i_level != self.num_resolutions - 1:
|
| 285 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 286 |
+
|
| 287 |
+
# middle
|
| 288 |
+
h = hs[-1]
|
| 289 |
+
h = self.mid.block_1(h, temb)
|
| 290 |
+
h = self.mid.attn_1(h)
|
| 291 |
+
h = self.mid.block_2(h, temb)
|
| 292 |
+
|
| 293 |
+
# upsampling
|
| 294 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 295 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 296 |
+
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
|
| 297 |
+
if len(self.up[i_level].attn) > 0:
|
| 298 |
+
h = self.up[i_level].attn[i_block](h)
|
| 299 |
+
if i_level != 0:
|
| 300 |
+
h = self.up[i_level].upsample(h)
|
| 301 |
+
|
| 302 |
+
# end
|
| 303 |
+
h = self.norm_out(h)
|
| 304 |
+
h = nonlinearity(h)
|
| 305 |
+
h = self.conv_out(h)
|
| 306 |
+
return h
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class Encoder(nn.Module):
|
| 310 |
+
def __init__(
|
| 311 |
+
self,
|
| 312 |
+
*,
|
| 313 |
+
ch,
|
| 314 |
+
out_ch,
|
| 315 |
+
ch_mult=(1, 2, 4, 8),
|
| 316 |
+
num_res_blocks,
|
| 317 |
+
attn_resolutions,
|
| 318 |
+
dropout=0.0,
|
| 319 |
+
resamp_with_conv=True,
|
| 320 |
+
in_channels,
|
| 321 |
+
resolution,
|
| 322 |
+
z_channels,
|
| 323 |
+
double_z=True,
|
| 324 |
+
**ignore_kwargs,
|
| 325 |
+
):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.ch = ch
|
| 328 |
+
self.temb_ch = 0
|
| 329 |
+
self.num_resolutions = len(ch_mult)
|
| 330 |
+
self.num_res_blocks = num_res_blocks
|
| 331 |
+
self.resolution = resolution
|
| 332 |
+
self.in_channels = in_channels
|
| 333 |
+
|
| 334 |
+
# downsampling
|
| 335 |
+
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
| 336 |
+
|
| 337 |
+
curr_res = resolution
|
| 338 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 339 |
+
self.down = nn.ModuleList()
|
| 340 |
+
for i_level in range(self.num_resolutions):
|
| 341 |
+
block = nn.ModuleList()
|
| 342 |
+
attn = nn.ModuleList()
|
| 343 |
+
block_in = ch * in_ch_mult[i_level]
|
| 344 |
+
block_out = ch * ch_mult[i_level]
|
| 345 |
+
for i_block in range(self.num_res_blocks):
|
| 346 |
+
block.append(
|
| 347 |
+
ResnetBlock(
|
| 348 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
| 349 |
+
)
|
| 350 |
+
)
|
| 351 |
+
block_in = block_out
|
| 352 |
+
if curr_res in attn_resolutions:
|
| 353 |
+
attn.append(AttnBlock(block_in))
|
| 354 |
+
down = nn.Module()
|
| 355 |
+
down.block = block
|
| 356 |
+
down.attn = attn
|
| 357 |
+
if i_level != self.num_resolutions - 1:
|
| 358 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 359 |
+
curr_res = curr_res // 2
|
| 360 |
+
self.down.append(down)
|
| 361 |
+
|
| 362 |
+
# middle
|
| 363 |
+
self.mid = nn.Module()
|
| 364 |
+
self.mid.block_1 = ResnetBlock(
|
| 365 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 366 |
+
)
|
| 367 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 368 |
+
self.mid.block_2 = ResnetBlock(
|
| 369 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# end
|
| 373 |
+
self.norm_out = Normalize(block_in)
|
| 374 |
+
self.conv_out = torch.nn.Conv2d(
|
| 375 |
+
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
def forward(self, x):
|
| 379 |
+
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
| 380 |
+
|
| 381 |
+
# timestep embedding
|
| 382 |
+
temb = None
|
| 383 |
+
|
| 384 |
+
# downsampling
|
| 385 |
+
hs = [self.conv_in(x)]
|
| 386 |
+
for i_level in range(self.num_resolutions):
|
| 387 |
+
for i_block in range(self.num_res_blocks):
|
| 388 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 389 |
+
if len(self.down[i_level].attn) > 0:
|
| 390 |
+
h = self.down[i_level].attn[i_block](h)
|
| 391 |
+
hs.append(h)
|
| 392 |
+
if i_level != self.num_resolutions - 1:
|
| 393 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 394 |
+
|
| 395 |
+
# middle
|
| 396 |
+
h = hs[-1]
|
| 397 |
+
h = self.mid.block_1(h, temb)
|
| 398 |
+
h = self.mid.attn_1(h)
|
| 399 |
+
h = self.mid.block_2(h, temb)
|
| 400 |
+
|
| 401 |
+
# end
|
| 402 |
+
h = self.norm_out(h)
|
| 403 |
+
h = nonlinearity(h)
|
| 404 |
+
h = self.conv_out(h)
|
| 405 |
+
return h
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
class Decoder(nn.Module):
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
*,
|
| 412 |
+
ch,
|
| 413 |
+
out_ch,
|
| 414 |
+
ch_mult=(1, 2, 4, 8),
|
| 415 |
+
num_res_blocks,
|
| 416 |
+
attn_resolutions,
|
| 417 |
+
dropout=0.0,
|
| 418 |
+
resamp_with_conv=True,
|
| 419 |
+
in_channels,
|
| 420 |
+
resolution,
|
| 421 |
+
z_channels,
|
| 422 |
+
give_pre_end=False,
|
| 423 |
+
**ignorekwargs,
|
| 424 |
+
):
|
| 425 |
+
super().__init__()
|
| 426 |
+
self.ch = ch
|
| 427 |
+
self.temb_ch = 0
|
| 428 |
+
self.num_resolutions = len(ch_mult)
|
| 429 |
+
self.num_res_blocks = num_res_blocks
|
| 430 |
+
self.resolution = resolution
|
| 431 |
+
self.in_channels = in_channels
|
| 432 |
+
self.give_pre_end = give_pre_end
|
| 433 |
+
|
| 434 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 435 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
| 436 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
| 437 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 438 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
| 439 |
+
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
| 440 |
+
|
| 441 |
+
# z to block_in
|
| 442 |
+
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
| 443 |
+
|
| 444 |
+
# middle
|
| 445 |
+
self.mid = nn.Module()
|
| 446 |
+
self.mid.block_1 = ResnetBlock(
|
| 447 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 448 |
+
)
|
| 449 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 450 |
+
self.mid.block_2 = ResnetBlock(
|
| 451 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# upsampling
|
| 455 |
+
self.up = nn.ModuleList()
|
| 456 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 457 |
+
block = nn.ModuleList()
|
| 458 |
+
attn = nn.ModuleList()
|
| 459 |
+
block_out = ch * ch_mult[i_level]
|
| 460 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 461 |
+
block.append(
|
| 462 |
+
ResnetBlock(
|
| 463 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
| 464 |
+
)
|
| 465 |
+
)
|
| 466 |
+
block_in = block_out
|
| 467 |
+
if curr_res in attn_resolutions:
|
| 468 |
+
attn.append(AttnBlock(block_in))
|
| 469 |
+
up = nn.Module()
|
| 470 |
+
up.block = block
|
| 471 |
+
up.attn = attn
|
| 472 |
+
if i_level != 0:
|
| 473 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 474 |
+
curr_res = curr_res * 2
|
| 475 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 476 |
+
|
| 477 |
+
# end
|
| 478 |
+
self.norm_out = Normalize(block_in)
|
| 479 |
+
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
| 480 |
+
|
| 481 |
+
def forward(self, z):
|
| 482 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
| 483 |
+
self.last_z_shape = z.shape
|
| 484 |
+
|
| 485 |
+
# timestep embedding
|
| 486 |
+
temb = None
|
| 487 |
+
|
| 488 |
+
# z to block_in
|
| 489 |
+
h = self.conv_in(z)
|
| 490 |
+
|
| 491 |
+
# middle
|
| 492 |
+
h = self.mid.block_1(h, temb)
|
| 493 |
+
h = self.mid.attn_1(h)
|
| 494 |
+
h = self.mid.block_2(h, temb)
|
| 495 |
+
|
| 496 |
+
# upsampling
|
| 497 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 498 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 499 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 500 |
+
if len(self.up[i_level].attn) > 0:
|
| 501 |
+
h = self.up[i_level].attn[i_block](h)
|
| 502 |
+
if i_level != 0:
|
| 503 |
+
h = self.up[i_level].upsample(h)
|
| 504 |
+
|
| 505 |
+
# end
|
| 506 |
+
if self.give_pre_end:
|
| 507 |
+
return h
|
| 508 |
+
|
| 509 |
+
h = self.norm_out(h)
|
| 510 |
+
h = nonlinearity(h)
|
| 511 |
+
h = self.conv_out(h)
|
| 512 |
+
return h
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
class VectorQuantizer(nn.Module):
|
| 516 |
+
"""
|
| 517 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
| 518 |
+
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
| 519 |
+
"""
|
| 520 |
+
|
| 521 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
| 522 |
+
# backwards compatibility we use the buggy version by default, but you can
|
| 523 |
+
# specify legacy=False to fix it.
|
| 524 |
+
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
| 525 |
+
super().__init__()
|
| 526 |
+
self.n_e = n_e
|
| 527 |
+
self.e_dim = e_dim
|
| 528 |
+
self.beta = beta
|
| 529 |
+
self.legacy = legacy
|
| 530 |
+
|
| 531 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
| 532 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 533 |
+
|
| 534 |
+
self.remap = remap
|
| 535 |
+
if self.remap is not None:
|
| 536 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
| 537 |
+
self.re_embed = self.used.shape[0]
|
| 538 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
| 539 |
+
if self.unknown_index == "extra":
|
| 540 |
+
self.unknown_index = self.re_embed
|
| 541 |
+
self.re_embed = self.re_embed + 1
|
| 542 |
+
print(
|
| 543 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
| 544 |
+
f"Using {self.unknown_index} for unknown indices."
|
| 545 |
+
)
|
| 546 |
+
else:
|
| 547 |
+
self.re_embed = n_e
|
| 548 |
+
|
| 549 |
+
self.sane_index_shape = sane_index_shape
|
| 550 |
+
|
| 551 |
+
def remap_to_used(self, inds):
|
| 552 |
+
ishape = inds.shape
|
| 553 |
+
assert len(ishape) > 1
|
| 554 |
+
inds = inds.reshape(ishape[0], -1)
|
| 555 |
+
used = self.used.to(inds)
|
| 556 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
| 557 |
+
new = match.argmax(-1)
|
| 558 |
+
unknown = match.sum(2) < 1
|
| 559 |
+
if self.unknown_index == "random":
|
| 560 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
| 561 |
+
else:
|
| 562 |
+
new[unknown] = self.unknown_index
|
| 563 |
+
return new.reshape(ishape)
|
| 564 |
+
|
| 565 |
+
def unmap_to_all(self, inds):
|
| 566 |
+
ishape = inds.shape
|
| 567 |
+
assert len(ishape) > 1
|
| 568 |
+
inds = inds.reshape(ishape[0], -1)
|
| 569 |
+
used = self.used.to(inds)
|
| 570 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
| 571 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
| 572 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
| 573 |
+
return back.reshape(ishape)
|
| 574 |
+
|
| 575 |
+
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
| 576 |
+
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
| 577 |
+
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
| 578 |
+
assert return_logits == False, "Only for interface compatible with Gumbel"
|
| 579 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 580 |
+
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
| 581 |
+
z_flattened = z.view(-1, self.e_dim)
|
| 582 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 583 |
+
|
| 584 |
+
d = (
|
| 585 |
+
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
| 586 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
| 587 |
+
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
| 591 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
| 592 |
+
perplexity = None
|
| 593 |
+
min_encodings = None
|
| 594 |
+
|
| 595 |
+
# compute loss for embedding
|
| 596 |
+
if not self.legacy:
|
| 597 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
| 598 |
+
else:
|
| 599 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
| 600 |
+
|
| 601 |
+
# preserve gradients
|
| 602 |
+
z_q = z + (z_q - z).detach()
|
| 603 |
+
|
| 604 |
+
# reshape back to match original input shape
|
| 605 |
+
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
| 606 |
+
|
| 607 |
+
if self.remap is not None:
|
| 608 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
| 609 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
| 610 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
| 611 |
+
|
| 612 |
+
if self.sane_index_shape:
|
| 613 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
| 614 |
+
|
| 615 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
| 616 |
+
|
| 617 |
+
def get_codebook_entry(self, indices, shape):
|
| 618 |
+
# shape specifying (batch, height, width, channel)
|
| 619 |
+
if self.remap is not None:
|
| 620 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
| 621 |
+
indices = self.unmap_to_all(indices)
|
| 622 |
+
indices = indices.reshape(-1) # flatten again
|
| 623 |
+
|
| 624 |
+
# get quantized latent vectors
|
| 625 |
+
z_q = self.embedding(indices)
|
| 626 |
+
|
| 627 |
+
if shape is not None:
|
| 628 |
+
z_q = z_q.view(shape)
|
| 629 |
+
# reshape back to match original input shape
|
| 630 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 631 |
+
|
| 632 |
+
return z_q
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
class VQModel(ModelMixin, ConfigMixin):
|
| 636 |
+
def __init__(
|
| 637 |
+
self,
|
| 638 |
+
ch,
|
| 639 |
+
out_ch,
|
| 640 |
+
num_res_blocks,
|
| 641 |
+
attn_resolutions,
|
| 642 |
+
in_channels,
|
| 643 |
+
resolution,
|
| 644 |
+
z_channels,
|
| 645 |
+
n_embed,
|
| 646 |
+
embed_dim,
|
| 647 |
+
remap=None,
|
| 648 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 649 |
+
ch_mult=(1, 2, 4, 8),
|
| 650 |
+
dropout=0.0,
|
| 651 |
+
double_z=True,
|
| 652 |
+
resamp_with_conv=True,
|
| 653 |
+
give_pre_end=False,
|
| 654 |
+
):
|
| 655 |
+
super().__init__()
|
| 656 |
+
|
| 657 |
+
# register all __init__ params with self.register
|
| 658 |
+
self.register(
|
| 659 |
+
ch=ch,
|
| 660 |
+
out_ch=out_ch,
|
| 661 |
+
num_res_blocks=num_res_blocks,
|
| 662 |
+
attn_resolutions=attn_resolutions,
|
| 663 |
+
in_channels=in_channels,
|
| 664 |
+
resolution=resolution,
|
| 665 |
+
z_channels=z_channels,
|
| 666 |
+
n_embed=n_embed,
|
| 667 |
+
embed_dim=embed_dim,
|
| 668 |
+
remap=remap,
|
| 669 |
+
sane_index_shape=sane_index_shape,
|
| 670 |
+
ch_mult=ch_mult,
|
| 671 |
+
dropout=dropout,
|
| 672 |
+
double_z=double_z,
|
| 673 |
+
resamp_with_conv=resamp_with_conv,
|
| 674 |
+
give_pre_end=give_pre_end,
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
# pass init params to Encoder
|
| 678 |
+
self.encoder = Encoder(
|
| 679 |
+
ch=ch,
|
| 680 |
+
out_ch=out_ch,
|
| 681 |
+
num_res_blocks=num_res_blocks,
|
| 682 |
+
attn_resolutions=attn_resolutions,
|
| 683 |
+
in_channels=in_channels,
|
| 684 |
+
resolution=resolution,
|
| 685 |
+
z_channels=z_channels,
|
| 686 |
+
ch_mult=ch_mult,
|
| 687 |
+
dropout=dropout,
|
| 688 |
+
resamp_with_conv=resamp_with_conv,
|
| 689 |
+
double_z=double_z,
|
| 690 |
+
give_pre_end=give_pre_end,
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
|
| 694 |
+
|
| 695 |
+
# pass init params to Decoder
|
| 696 |
+
self.decoder = Decoder(
|
| 697 |
+
ch=ch,
|
| 698 |
+
out_ch=out_ch,
|
| 699 |
+
num_res_blocks=num_res_blocks,
|
| 700 |
+
attn_resolutions=attn_resolutions,
|
| 701 |
+
in_channels=in_channels,
|
| 702 |
+
resolution=resolution,
|
| 703 |
+
z_channels=z_channels,
|
| 704 |
+
ch_mult=ch_mult,
|
| 705 |
+
dropout=dropout,
|
| 706 |
+
resamp_with_conv=resamp_with_conv,
|
| 707 |
+
give_pre_end=give_pre_end,
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
def encode(self, x):
|
| 711 |
+
h = self.encoder(x)
|
| 712 |
+
h = self.quant_conv(h)
|
| 713 |
+
return h
|
| 714 |
+
|
| 715 |
+
def decode(self, h, force_not_quantize=False):
|
| 716 |
+
# also go through quantization layer
|
| 717 |
+
if not force_not_quantize:
|
| 718 |
+
quant, emb_loss, info = self.quantize(h)
|
| 719 |
+
else:
|
| 720 |
+
quant = h
|
| 721 |
+
quant = self.post_quant_conv(quant)
|
| 722 |
+
dec = self.decoder(quant)
|
| 723 |
+
return dec
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class DiagonalGaussianDistribution(object):
|
| 727 |
+
def __init__(self, parameters, deterministic=False):
|
| 728 |
+
self.parameters = parameters
|
| 729 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 730 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 731 |
+
self.deterministic = deterministic
|
| 732 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 733 |
+
self.var = torch.exp(self.logvar)
|
| 734 |
+
if self.deterministic:
|
| 735 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
| 736 |
+
|
| 737 |
+
def sample(self):
|
| 738 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
| 739 |
+
return x
|
| 740 |
+
|
| 741 |
+
def kl(self, other=None):
|
| 742 |
+
if self.deterministic:
|
| 743 |
+
return torch.Tensor([0.])
|
| 744 |
+
else:
|
| 745 |
+
if other is None:
|
| 746 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
| 747 |
+
+ self.var - 1.0 - self.logvar,
|
| 748 |
+
dim=[1, 2, 3])
|
| 749 |
+
else:
|
| 750 |
+
return 0.5 * torch.sum(
|
| 751 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 752 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 753 |
+
dim=[1, 2, 3])
|
| 754 |
+
|
| 755 |
+
def nll(self, sample, dims=[1,2,3]):
|
| 756 |
+
if self.deterministic:
|
| 757 |
+
return torch.Tensor([0.])
|
| 758 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 759 |
+
return 0.5 * torch.sum(
|
| 760 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 761 |
+
dim=dims)
|
| 762 |
+
|
| 763 |
+
def mode(self):
|
| 764 |
+
return self.mean
|
| 765 |
+
|
| 766 |
+
class AutoencoderKL(ModelMixin, ConfigMixin):
|
| 767 |
+
def __init__(
|
| 768 |
+
self,
|
| 769 |
+
ch,
|
| 770 |
+
out_ch,
|
| 771 |
+
num_res_blocks,
|
| 772 |
+
attn_resolutions,
|
| 773 |
+
in_channels,
|
| 774 |
+
resolution,
|
| 775 |
+
z_channels,
|
| 776 |
+
embed_dim,
|
| 777 |
+
remap=None,
|
| 778 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 779 |
+
ch_mult=(1, 2, 4, 8),
|
| 780 |
+
dropout=0.0,
|
| 781 |
+
double_z=True,
|
| 782 |
+
resamp_with_conv=True,
|
| 783 |
+
give_pre_end=False,
|
| 784 |
+
):
|
| 785 |
+
super().__init__()
|
| 786 |
+
|
| 787 |
+
# register all __init__ params with self.register
|
| 788 |
+
self.register(
|
| 789 |
+
ch=ch,
|
| 790 |
+
out_ch=out_ch,
|
| 791 |
+
num_res_blocks=num_res_blocks,
|
| 792 |
+
attn_resolutions=attn_resolutions,
|
| 793 |
+
in_channels=in_channels,
|
| 794 |
+
resolution=resolution,
|
| 795 |
+
z_channels=z_channels,
|
| 796 |
+
embed_dim=embed_dim,
|
| 797 |
+
remap=remap,
|
| 798 |
+
sane_index_shape=sane_index_shape,
|
| 799 |
+
ch_mult=ch_mult,
|
| 800 |
+
dropout=dropout,
|
| 801 |
+
double_z=double_z,
|
| 802 |
+
resamp_with_conv=resamp_with_conv,
|
| 803 |
+
give_pre_end=give_pre_end,
|
| 804 |
+
)
|
| 805 |
+
|
| 806 |
+
# pass init params to Encoder
|
| 807 |
+
self.encoder = Encoder(
|
| 808 |
+
ch=ch,
|
| 809 |
+
out_ch=out_ch,
|
| 810 |
+
num_res_blocks=num_res_blocks,
|
| 811 |
+
attn_resolutions=attn_resolutions,
|
| 812 |
+
in_channels=in_channels,
|
| 813 |
+
resolution=resolution,
|
| 814 |
+
z_channels=z_channels,
|
| 815 |
+
ch_mult=ch_mult,
|
| 816 |
+
dropout=dropout,
|
| 817 |
+
resamp_with_conv=resamp_with_conv,
|
| 818 |
+
double_z=double_z,
|
| 819 |
+
give_pre_end=give_pre_end,
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
+
# pass init params to Decoder
|
| 823 |
+
self.decoder = Decoder(
|
| 824 |
+
ch=ch,
|
| 825 |
+
out_ch=out_ch,
|
| 826 |
+
num_res_blocks=num_res_blocks,
|
| 827 |
+
attn_resolutions=attn_resolutions,
|
| 828 |
+
in_channels=in_channels,
|
| 829 |
+
resolution=resolution,
|
| 830 |
+
z_channels=z_channels,
|
| 831 |
+
ch_mult=ch_mult,
|
| 832 |
+
dropout=dropout,
|
| 833 |
+
resamp_with_conv=resamp_with_conv,
|
| 834 |
+
give_pre_end=give_pre_end,
|
| 835 |
+
)
|
| 836 |
+
|
| 837 |
+
self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1)
|
| 838 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
| 839 |
+
|
| 840 |
+
def encode(self, x):
|
| 841 |
+
h = self.encoder(x)
|
| 842 |
+
moments = self.quant_conv(h)
|
| 843 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 844 |
+
return posterior
|
| 845 |
+
|
| 846 |
+
def decode(self, z):
|
| 847 |
+
z = self.post_quant_conv(z)
|
| 848 |
+
dec = self.decoder(z)
|
| 849 |
+
return dec
|
| 850 |
+
|
| 851 |
+
def forward(self, input, sample_posterior=True):
|
| 852 |
+
posterior = self.encode(input)
|
| 853 |
+
if sample_posterior:
|
| 854 |
+
z = posterior.sample()
|
| 855 |
+
else:
|
| 856 |
+
z = posterior.mode()
|
| 857 |
+
dec = self.decode(z)
|
| 858 |
+
return dec, posterior
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
class LatentDiffusion(DiffusionPipeline):
|
| 862 |
+
def __init__(self, vqvae, bert, tokenizer, unet, noise_scheduler):
|
| 863 |
+
super().__init__()
|
| 864 |
+
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, noise_scheduler=noise_scheduler)
|
| 865 |
+
|
| 866 |
+
def __call__(self, prompt, batch_size=1, generator=None, torch_device=None, eta=0.0, guidance_scale=1.0, num_inference_steps=50):
|
| 867 |
+
# eta corresponds to η in paper and should be between [0, 1]
|
| 868 |
+
|
| 869 |
+
if torch_device is None:
|
| 870 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 871 |
+
|
| 872 |
+
self.unet.to(torch_device)
|
| 873 |
+
self.vqvae.to(torch_device)
|
| 874 |
+
self.bert.to(torch_device)
|
| 875 |
+
|
| 876 |
+
if guidance_scale != 1.0:
|
| 877 |
+
uncond_input = self.tokenizer([""], padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
|
| 878 |
+
uncond_embeddings = self.bert(uncond_input.input_ids)[0]
|
| 879 |
+
|
| 880 |
+
# get text embedding
|
| 881 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, return_tensors='pt').to(torch_device)
|
| 882 |
+
text_embedding = self.bert(text_input.input_ids)[0]
|
| 883 |
+
|
| 884 |
+
num_trained_timesteps = self.noise_scheduler.num_timesteps
|
| 885 |
+
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
|
| 886 |
+
|
| 887 |
+
image = self.noise_scheduler.sample_noise(
|
| 888 |
+
(batch_size, self.unet.in_channels, self.unet.image_size, self.unet.image_size),
|
| 889 |
+
device=torch_device,
|
| 890 |
+
generator=generator,
|
| 891 |
+
)
|
| 892 |
+
|
| 893 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
| 894 |
+
# Ideally, read DDIM paper in-detail understanding
|
| 895 |
+
|
| 896 |
+
# Notation (<variable name> -> <name in paper>
|
| 897 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
| 898 |
+
# - pred_original_image -> f_theta(x_t, t) or x_0
|
| 899 |
+
# - std_dev_t -> sigma_t
|
| 900 |
+
# - eta -> η
|
| 901 |
+
# - pred_image_direction -> "direction pointingc to x_t"
|
| 902 |
+
# - pred_prev_image -> "x_t-1"
|
| 903 |
+
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
|
| 904 |
+
# 1. predict noise residual
|
| 905 |
+
if guidance_scale == 1.0:
|
| 906 |
+
timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device)
|
| 907 |
+
context = text_embedding
|
| 908 |
+
image_in = image
|
| 909 |
+
else:
|
| 910 |
+
image_in = torch.cat([image] * 2)
|
| 911 |
+
timesteps = torch.tensor([inference_step_times[t]] * image.shape[0], device=torch_device)
|
| 912 |
+
context = torch.cat([uncond_embeddings, text_embedding])
|
| 913 |
+
|
| 914 |
+
with torch.no_grad():
|
| 915 |
+
pred_noise_t = self.unet(image_in, timesteps, context=context)
|
| 916 |
+
|
| 917 |
+
if guidance_scale != 1.0:
|
| 918 |
+
pred_noise_t_uncond, pred_noise_t = pred_noise_t.chunk(2)
|
| 919 |
+
pred_noise_t = pred_noise_t_uncond + guidance_scale * (pred_noise_t - pred_noise_t_uncond)
|
| 920 |
+
|
| 921 |
+
# 2. get actual t and t-1
|
| 922 |
+
train_step = inference_step_times[t]
|
| 923 |
+
prev_train_step = inference_step_times[t - 1] if t > 0 else -1
|
| 924 |
+
|
| 925 |
+
# 3. compute alphas, betas
|
| 926 |
+
alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
|
| 927 |
+
alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
|
| 928 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 929 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 930 |
+
|
| 931 |
+
# 4. Compute predicted previous image from predicted noise
|
| 932 |
+
# First: compute predicted original image from predicted noise also called
|
| 933 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 934 |
+
pred_original_image = (image - beta_prod_t.sqrt() * pred_noise_t) / alpha_prod_t.sqrt()
|
| 935 |
+
|
| 936 |
+
# Second: Clip "predicted x_0"
|
| 937 |
+
# pred_original_image = torch.clamp(pred_original_image, -1, 1)
|
| 938 |
+
|
| 939 |
+
# Third: Compute variance: "sigma_t(η)" -> see formula (16)
|
| 940 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
| 941 |
+
std_dev_t = (beta_prod_t_prev / beta_prod_t).sqrt() * (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
|
| 942 |
+
std_dev_t = eta * std_dev_t
|
| 943 |
+
|
| 944 |
+
# Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 945 |
+
pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t
|
| 946 |
+
|
| 947 |
+
# Fifth: Compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 948 |
+
pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction
|
| 949 |
+
|
| 950 |
+
# 5. Sample x_t-1 image optionally if η > 0.0 by adding noise to pred_prev_image
|
| 951 |
+
# Note: eta = 1.0 essentially corresponds to DDPM
|
| 952 |
+
if eta > 0.0:
|
| 953 |
+
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
|
| 954 |
+
prev_image = pred_prev_image + std_dev_t * noise
|
| 955 |
+
else:
|
| 956 |
+
prev_image = pred_prev_image
|
| 957 |
+
|
| 958 |
+
# 6. Set current image to prev_image: x_t -> x_t-1
|
| 959 |
+
image = prev_image
|
| 960 |
+
|
| 961 |
+
image = 1 / 0.18215 * image
|
| 962 |
+
image = self.vqvae.decode(image)
|
| 963 |
+
image = torch.clamp((image+1.0)/2.0, min=0.0, max=1.0)
|
| 964 |
+
|
| 965 |
+
return image
|
noise_scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "GaussianDDPMScheduler",
|
| 3 |
+
"_diffusers_version": "0.0.1",
|
| 4 |
+
"beta_end": 0.012,
|
| 5 |
+
"beta_schedule": "linear",
|
| 6 |
+
"beta_start": 0.00085,
|
| 7 |
+
"timesteps": 1000,
|
| 8 |
+
"variance_type": "fixed_small"
|
| 9 |
+
}
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": true,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 512,
|
| 7 |
+
"name_or_path": "bert-base-uncased",
|
| 8 |
+
"never_split": null,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"sep_token": "[SEP]",
|
| 11 |
+
"special_tokens_map_file": null,
|
| 12 |
+
"strip_accents": null,
|
| 13 |
+
"tokenize_chinese_chars": true,
|
| 14 |
+
"tokenizer_class": "BertTokenizer",
|
| 15 |
+
"unk_token": "[UNK]"
|
| 16 |
+
}
|
tokenizer/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
unet/config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "UNetLDMModel",
|
| 3 |
+
"_diffusers_version": "0.0.1",
|
| 4 |
+
"attention_resolutions": [
|
| 5 |
+
4,
|
| 6 |
+
2,
|
| 7 |
+
1
|
| 8 |
+
],
|
| 9 |
+
"channel_mult": [
|
| 10 |
+
1,
|
| 11 |
+
2,
|
| 12 |
+
4,
|
| 13 |
+
4
|
| 14 |
+
],
|
| 15 |
+
"context_dim": 1280,
|
| 16 |
+
"conv_resample": true,
|
| 17 |
+
"dims": 2,
|
| 18 |
+
"dropout": 0,
|
| 19 |
+
"image_size": 32,
|
| 20 |
+
"in_channels": 4,
|
| 21 |
+
"legacy": false,
|
| 22 |
+
"model_channels": 320,
|
| 23 |
+
"n_embed": null,
|
| 24 |
+
"name_or_path": "../fusing-models/unet/",
|
| 25 |
+
"num_classes": null,
|
| 26 |
+
"num_head_channels": -1,
|
| 27 |
+
"num_heads": 8,
|
| 28 |
+
"num_heads_upsample": -1,
|
| 29 |
+
"num_res_blocks": 2,
|
| 30 |
+
"out_channels": 4,
|
| 31 |
+
"resblock_updown": false,
|
| 32 |
+
"transformer_depth": 1,
|
| 33 |
+
"use_checkpoint": false,
|
| 34 |
+
"use_fp16": false,
|
| 35 |
+
"use_new_attention_order": false,
|
| 36 |
+
"use_scale_shift_norm": false,
|
| 37 |
+
"use_spatial_transformer": true
|
| 38 |
+
}
|
unet/diffusion_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95549fac1575e6dc07e532a2e5fbf2e2dc3844bdd25224aa5e9d07f74ae2ede6
|
| 3 |
+
size 3489482533
|
vqvae/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.0.1",
|
| 4 |
+
"attn_resolutions": [],
|
| 5 |
+
"ch": 128,
|
| 6 |
+
"ch_mult": [
|
| 7 |
+
1,
|
| 8 |
+
2,
|
| 9 |
+
4,
|
| 10 |
+
4
|
| 11 |
+
],
|
| 12 |
+
"double_z": true,
|
| 13 |
+
"dropout": 0.0,
|
| 14 |
+
"embed_dim": 4,
|
| 15 |
+
"give_pre_end": false,
|
| 16 |
+
"in_channels": 3,
|
| 17 |
+
"name_or_path": "../fusing-models/vqvae/",
|
| 18 |
+
"num_res_blocks": 2,
|
| 19 |
+
"out_ch": 3,
|
| 20 |
+
"remap": null,
|
| 21 |
+
"resamp_with_conv": true,
|
| 22 |
+
"resolution": 256,
|
| 23 |
+
"sane_index_shape": false,
|
| 24 |
+
"z_channels": 4
|
| 25 |
+
}
|
vqvae/diffusion_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40e9811ed7c6c4775c110fd8347ee11283d99b603852f96863d172a23787a3b5
|
| 3 |
+
size 334704849
|