hokar3361 commited on
Commit
ca1a830
·
verified ·
1 Parent(s): b8b63a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -171
README.md CHANGED
@@ -1,199 +1,111 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
180
 
181
- [More Information Needed]
 
 
 
 
 
 
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
+ language:
3
+ - en
4
+ - code
5
+ language_bcp47:
6
+ - en
7
+ - javascript
8
+ license: apache-2.0
9
+ tags:
10
+ - text-generation
11
+ - code
12
+ - javascript
13
+ - coding-assistant
14
+ - fine-tuning
15
+ - lora
16
+ - unsloth
17
+ - gpt-oss
18
+ - vllm
19
+ base_model: openai/gpt-oss-20b
20
  library_name: transformers
21
+ pipeline_tag: text-generation
22
+ model-index:
23
+ - name: gpt-oss-coder-v0.1-javascript
24
+ results: []
25
  ---
26
 
27
+ # gpt-oss-coder-v0.1-javascript
28
 
29
+ A **language-specialized coding model for JavaScript**, fine-tuned from OpenAI’s open-weight **gpt-oss** base with **very small, curated JS data** using **Unsloth**.
30
+ This release prioritizes **practical code generation quality** over benchmark scores and has been **qualitatively validated** on real prompts (e.g., completions, refactors, docstrings, tests).
31
 
32
+ > **Status**: Experimental preview (`v0.1-javascript`).
33
+ > **Focus**: JS coding tasks (function-level completion, small refactors, idiomatic patterns).
34
+ > **Why small-data?** Faster iteration and lower cost while proving specialization value.
35
 
36
+ ---
37
 
38
  ## Model Details
39
 
40
+ - **Model type**: Causal LM (decoder-only), JS-specialized fine-tune
41
+ - **Base model**: `openai/gpt-oss-20b` (open-weight, Apache-2.0)
42
+ - **Fine-tuning**: LoRA via **Unsloth**, minimal curated dataset (code snippets, tasks, transformations)
43
+ - **License**: Apache-2.0 (derivative weights released under Apache-2.0)
44
+ - **Author / Maintainer**: `hokar3361`
45
+ - **Intended Languages**: JavaScript (ES6+); English prompts recommended
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ ## Intended Use & Limitations
50
 
51
+ ### Intended Use
52
+ - Code completion and synthesis for **JavaScript**
53
+ - Small refactors, idiomatic rewrites, test scaffolding, JSDoc/docstrings
54
+ - Snippet-level reasoning and bug fixes
55
 
56
+ ### Out of Scope / Limitations
57
+ - Not a substitute for static analysis, linters, or security review
58
+ - May hallucinate APIs or types; verify before production use
59
+ - Trained on **small** domain data → expect gaps on rare frameworks or edge APIs
60
 
61
+ ---
62
 
63
+ ## Quickstart
64
 
65
+ ### 1) Transformers (merged weights)
66
 
67
+ ```python
68
+ from transformers import AutoTokenizer, AutoModelForCausalLM
69
+ import torch
70
 
71
+ repo = "hokar3361/gpt-oss-coderjs-v0.1"
72
+ tok = AutoTokenizer.from_pretrained(repo, use_fast=True)
73
+ model = AutoModelForCausalLM.from_pretrained(
74
+ repo,
75
+ torch_dtype=torch.bfloat16,
76
+ device_map="auto"
77
+ )
78
 
79
+ prompt = "```js\n// Write a function that flattens a nested array of numbers\n"
80
+ inputs = tok(prompt, return_tensors="pt").to(model.device)
81
+ out = model.generate(**inputs, max_new_tokens=128, temperature=0.3, do_sample=False)
82
+ print(tok.decode(out[0], skip_special_tokens=True))
83
+ 2) vLLM (recommended)
84
+ bash
85
+ コードをコピーする
86
+ vllm serve hokar3361/gpt-oss-coderjs-v0.1 \
87
+ --async-scheduling \
88
+ --max-model-len 4096 \
89
+ --gpu-memory-utilization 0.90
90
+ For LoRA-only repos, add --lora-modules as per vLLM documentation.
91
 
92
+ For merged weights, the above command is sufficient.
93
 
94
+ Acknowledgements
95
+ This work was made possible thanks to the open-weight release of gpt-oss by OpenAI, which provided a strong foundation under the Apache-2.0 license.
96
+ Special thanks to the open-source community around Unsloth for enabling memory-efficient and rapid LoRA fine-tuning on limited hardware.
97
+ We also thank the Hugging Face and vLLM ecosystems for lowering the barrier to experimentation.
98
 
99
+ Disclaimer & Experimental Status
100
+ This model (v0.1-javascript) is highly experimental:
101
 
102
+ Small data: Fine-tuned on a very small JavaScript-focused dataset, mainly to validate the workflow and feasibility of language specialization.
103
 
104
+ Not production-ready: The model may generate incomplete, insecure, or non-idiomatic code; do not rely on it for production use without careful review.
105
 
106
+ Benchmarks not representative: Due to issues in the current verification scripts, benchmark scores are not included. Assessment is based only on qualitative inspection of outputs, which show promising improvements but remain anecdotal.
107
 
108
+ Early stage: This is only an initial exploration; future versions with larger, more diverse training corpora are expected to improve stability and coverage.
109
 
110
+ We share this release to contribute to the community and gather early feedback.
111
+ Use responsibly, validate outputs, and treat this as a proof-of-concept.