Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/huggingface/CodeBERTa-small-v1/README.md
README.md
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: code
|
| 3 |
+
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png
|
| 4 |
+
datasets:
|
| 5 |
+
- code_search_net
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# CodeBERTa
|
| 9 |
+
|
| 10 |
+
CodeBERTa is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub.
|
| 11 |
+
|
| 12 |
+
Supported languages:
|
| 13 |
+
|
| 14 |
+
```shell
|
| 15 |
+
"go"
|
| 16 |
+
"java"
|
| 17 |
+
"javascript"
|
| 18 |
+
"php"
|
| 19 |
+
"python"
|
| 20 |
+
"ruby"
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
|
| 24 |
+
|
| 25 |
+
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
|
| 26 |
+
|
| 27 |
+
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full corpus (~2M functions) for 5 epochs.
|
| 28 |
+
|
| 29 |
+
### Tensorboard for this training ⤵️
|
| 30 |
+
|
| 31 |
+
[](https://tensorboard.dev/experiment/irRI7jXGQlqmlxXS0I07ew/#scalars)
|
| 32 |
+
|
| 33 |
+
## Quick start: masked language modeling prediction
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
PHP_CODE = """
|
| 37 |
+
public static <mask> set(string $key, $value) {
|
| 38 |
+
if (!in_array($key, self::$allowedKeys)) {
|
| 39 |
+
throw new \InvalidArgumentException('Invalid key given');
|
| 40 |
+
}
|
| 41 |
+
self::$storedValues[$key] = $value;
|
| 42 |
+
}
|
| 43 |
+
""".lstrip()
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
### Does the model know how to complete simple PHP code?
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from transformers import pipeline
|
| 50 |
+
|
| 51 |
+
fill_mask = pipeline(
|
| 52 |
+
"fill-mask",
|
| 53 |
+
model="huggingface/CodeBERTa-small-v1",
|
| 54 |
+
tokenizer="huggingface/CodeBERTa-small-v1"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
fill_mask(PHP_CODE)
|
| 58 |
+
|
| 59 |
+
## Top 5 predictions:
|
| 60 |
+
#
|
| 61 |
+
' function' # prob 0.9999827146530151
|
| 62 |
+
'function' #
|
| 63 |
+
' void' #
|
| 64 |
+
' def' #
|
| 65 |
+
' final' #
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### Yes! That was easy 🎉 What about some Python (warning: this is going to be meta)
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
PYTHON_CODE = """
|
| 72 |
+
def pipeline(
|
| 73 |
+
task: str,
|
| 74 |
+
model: Optional = None,
|
| 75 |
+
framework: Optional[<mask>] = None,
|
| 76 |
+
**kwargs
|
| 77 |
+
) -> Pipeline:
|
| 78 |
+
pass
|
| 79 |
+
""".lstrip()
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
Results:
|
| 83 |
+
```python
|
| 84 |
+
'framework', 'Framework', ' framework', 'None', 'str'
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
> This program can auto-complete itself! 😱
|
| 88 |
+
|
| 89 |
+
### Just for fun, let's try to mask natural language (not code):
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
fill_mask("My name is <mask>.")
|
| 93 |
+
|
| 94 |
+
# {'sequence': '<s> My name is undefined.</s>', 'score': 0.2548016905784607, 'token': 3353}
|
| 95 |
+
# {'sequence': '<s> My name is required.</s>', 'score': 0.07290805131196976, 'token': 2371}
|
| 96 |
+
# {'sequence': '<s> My name is null.</s>', 'score': 0.06323737651109695, 'token': 469}
|
| 97 |
+
# {'sequence': '<s> My name is name.</s>', 'score': 0.021919190883636475, 'token': 652}
|
| 98 |
+
# {'sequence': '<s> My name is disabled.</s>', 'score': 0.019681859761476517, 'token': 7434}
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
This (kind of) works because code contains comments (which contain natural language).
|
| 102 |
+
|
| 103 |
+
Of course, the most frequent name for a Computer scientist must be undefined 🤓.
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
## Downstream task: [programming language identification](https://huggingface.co/huggingface/CodeBERTa-language-id)
|
| 107 |
+
|
| 108 |
+
See the model card for **[`huggingface/CodeBERTa-language-id`](https://huggingface.co/huggingface/CodeBERTa-language-id)** 🤯.
|
| 109 |
+
|
| 110 |
+
<br>
|
| 111 |
+
|
| 112 |
+
## CodeSearchNet citation
|
| 113 |
+
|
| 114 |
+
<details>
|
| 115 |
+
|
| 116 |
+
```bibtex
|
| 117 |
+
@article{husain_codesearchnet_2019,
|
| 118 |
+
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
|
| 119 |
+
shorttitle = {{CodeSearchNet} {Challenge}},
|
| 120 |
+
url = {http://arxiv.org/abs/1909.09436},
|
| 121 |
+
urldate = {2020-03-12},
|
| 122 |
+
journal = {arXiv:1909.09436 [cs, stat]},
|
| 123 |
+
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
| 124 |
+
month = sep,
|
| 125 |
+
year = {2019},
|
| 126 |
+
note = {arXiv: 1909.09436},
|
| 127 |
+
}
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
</details>
|