first commit
Browse files- config.json +64 -0
- configuration_lladamoe.py +97 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_lladamoe.py +1186 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LLaDAMoEModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"clip_qkv": null,
|
| 8 |
+
"dense_intermediate_size": 8192,
|
| 9 |
+
"eos_token_id": 156892,
|
| 10 |
+
"expert_intermediate_size": 1024,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 2048,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"max_position_embeddings": 8192,
|
| 15 |
+
"model_type": "llada",
|
| 16 |
+
"moe_layer_freq": [
|
| 17 |
+
1,
|
| 18 |
+
1,
|
| 19 |
+
1,
|
| 20 |
+
1,
|
| 21 |
+
1,
|
| 22 |
+
1,
|
| 23 |
+
1,
|
| 24 |
+
1,
|
| 25 |
+
1,
|
| 26 |
+
1,
|
| 27 |
+
1,
|
| 28 |
+
1,
|
| 29 |
+
1,
|
| 30 |
+
1,
|
| 31 |
+
1,
|
| 32 |
+
1
|
| 33 |
+
],
|
| 34 |
+
"moe_router_enable_expert_bias": false,
|
| 35 |
+
"moe_router_score_function": "softmax",
|
| 36 |
+
"norm_topk_prob": null,
|
| 37 |
+
"num_attention_heads": 16,
|
| 38 |
+
"num_experts": 64,
|
| 39 |
+
"num_experts_per_tok": 8,
|
| 40 |
+
"num_hidden_layers": 16,
|
| 41 |
+
"num_key_value_heads": 16,
|
| 42 |
+
"output_router_logits": false,
|
| 43 |
+
"pad_token_id": 156892,
|
| 44 |
+
"partial_rotary_factor": 1,
|
| 45 |
+
"qk_layernorm": true,
|
| 46 |
+
"rms_norm_eps": 1e-05,
|
| 47 |
+
"rope_scaling": null,
|
| 48 |
+
"rope_theta": 50000,
|
| 49 |
+
"routed_scaling_factor": 1,
|
| 50 |
+
"router_aux_loss_coef": 0.01,
|
| 51 |
+
"router_num_group": null,
|
| 52 |
+
"router_topk_group": null,
|
| 53 |
+
"shared_expert_intermediate_size": null,
|
| 54 |
+
"tie_word_embeddings": false,
|
| 55 |
+
"torch_dtype": "bfloat16",
|
| 56 |
+
"transformers_version": "4.53.2",
|
| 57 |
+
"use_cache": false,
|
| 58 |
+
"vocab_size": 157184,
|
| 59 |
+
"auto_map": {
|
| 60 |
+
"AutoConfig": "configuration_lladamoe.LLaDAConfig",
|
| 61 |
+
"AutoModel": "modeling_lladamoe.LLaDAMoEModelLM",
|
| 62 |
+
"AutoModelForCausalLM": "modeling_lladamoe.LLaDAMoEModelLM"
|
| 63 |
+
}
|
| 64 |
+
}
|
configuration_lladamoe.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LLaDA MoE configuration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class LLaDAConfig(PretrainedConfig):
|
| 10 |
+
model_type = "llada"
|
| 11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
vocab_size=-1,
|
| 16 |
+
hidden_size=-1,
|
| 17 |
+
dense_intermediate_size=-1,
|
| 18 |
+
expert_intermediate_size=-1,
|
| 19 |
+
shared_expert_intermediate_size=-1,
|
| 20 |
+
num_hidden_layers=-1,
|
| 21 |
+
num_attention_heads=-1,
|
| 22 |
+
num_key_value_heads=None,
|
| 23 |
+
hidden_act="silu",
|
| 24 |
+
max_position_embeddings=4096,
|
| 25 |
+
initializer_range=0.02,
|
| 26 |
+
rms_norm_eps=1e-05,
|
| 27 |
+
use_cache=False,
|
| 28 |
+
pad_token_id=1,
|
| 29 |
+
bos_token_id=None,
|
| 30 |
+
eos_token_id=50279,
|
| 31 |
+
tie_word_embeddings=False,
|
| 32 |
+
rope_theta=-1,
|
| 33 |
+
partial_rotary_factor=-1,
|
| 34 |
+
rope_scaling=None,
|
| 35 |
+
attention_bias=False,
|
| 36 |
+
attention_dropout=0.0,
|
| 37 |
+
clip_qkv=None,
|
| 38 |
+
num_experts_per_tok=-1,
|
| 39 |
+
num_experts=-1,
|
| 40 |
+
output_router_logits=False,
|
| 41 |
+
router_aux_loss_coef=0.01,
|
| 42 |
+
norm_topk_prob=None,
|
| 43 |
+
qk_layernorm=None,
|
| 44 |
+
moe_layer_freq=[],
|
| 45 |
+
moe_router_enable_expert_bias=None,
|
| 46 |
+
moe_router_score_function=None,
|
| 47 |
+
routed_scaling_factor=1,
|
| 48 |
+
router_num_group=-2,
|
| 49 |
+
router_topk_group=-2,
|
| 50 |
+
**kwargs,
|
| 51 |
+
):
|
| 52 |
+
self.vocab_size = vocab_size
|
| 53 |
+
self.max_position_embeddings = max_position_embeddings
|
| 54 |
+
self.hidden_size = hidden_size
|
| 55 |
+
self.expert_intermediate_size = expert_intermediate_size
|
| 56 |
+
self.dense_intermediate_size = dense_intermediate_size
|
| 57 |
+
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
| 58 |
+
self.num_hidden_layers = num_hidden_layers
|
| 59 |
+
self.num_attention_heads = num_attention_heads
|
| 60 |
+
if num_key_value_heads is None:
|
| 61 |
+
num_key_value_heads = num_attention_heads
|
| 62 |
+
self.num_key_value_heads = num_key_value_heads
|
| 63 |
+
|
| 64 |
+
self.hidden_act = hidden_act
|
| 65 |
+
self.initializer_range = initializer_range
|
| 66 |
+
self.rms_norm_eps = rms_norm_eps
|
| 67 |
+
self.use_cache = use_cache
|
| 68 |
+
self.rope_theta = rope_theta
|
| 69 |
+
self.rope_scaling = rope_scaling
|
| 70 |
+
self.attention_bias = attention_bias
|
| 71 |
+
self.attention_dropout = attention_dropout
|
| 72 |
+
self.clip_qkv = clip_qkv
|
| 73 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 74 |
+
self.num_experts = num_experts
|
| 75 |
+
self.output_router_logits = output_router_logits
|
| 76 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 77 |
+
self.norm_topk_prob = norm_topk_prob
|
| 78 |
+
self.qk_layernorm = qk_layernorm
|
| 79 |
+
self.moe_layer_freq = moe_layer_freq
|
| 80 |
+
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
|
| 81 |
+
self.moe_router_score_function = moe_router_score_function
|
| 82 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 83 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 84 |
+
self.router_num_group = router_num_group
|
| 85 |
+
self.router_topk_group = router_topk_group
|
| 86 |
+
|
| 87 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 88 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 89 |
+
rope_config_validation(self)
|
| 90 |
+
|
| 91 |
+
super().__init__(
|
| 92 |
+
pad_token_id=pad_token_id,
|
| 93 |
+
bos_token_id=bos_token_id,
|
| 94 |
+
eos_token_id=eos_token_id,
|
| 95 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 96 |
+
**kwargs,
|
| 97 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"eos_token_id": 156892,
|
| 4 |
+
"pad_token_id": 156892,
|
| 5 |
+
"transformers_version": "4.46.3",
|
| 6 |
+
"use_cache": false
|
| 7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1f7a1df218bae46114ffcfbccfea887d3c37df31b2fd48438ea88423737a11b2
|
| 3 |
+
size 4999258928
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b038b72b681850c9dbc9f5dc3da099776449d92e453e274467cd31710d7a39b
|
| 3 |
+
size 4997188984
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9a0cdbd828bbef71568e112d607978fc75dd0366e364854b71cb1e048740646
|
| 3 |
+
size 4717712520
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_lladamoe.py
ADDED
|
@@ -0,0 +1,1186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LLaDA MoE model pytorch implementation"""
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.utils.checkpoint
|
| 9 |
+
from torch import nn
|
| 10 |
+
from torch.nn import CrossEntropyLoss
|
| 11 |
+
|
| 12 |
+
from transformers.activations import ACT2FN
|
| 13 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
MoeCausalLMOutputWithPast,
|
| 17 |
+
MoeModelOutputWithPast,
|
| 18 |
+
)
|
| 19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 20 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 21 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 22 |
+
from transformers.utils import (
|
| 23 |
+
add_start_docstrings,
|
| 24 |
+
add_start_docstrings_to_model_forward,
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
logging,
|
| 28 |
+
replace_return_docstrings,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
from .configuration_lladamoe import LLaDAConfig
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
if is_flash_attn_2_available():
|
| 35 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
logger = logging.get_logger(__name__)
|
| 39 |
+
|
| 40 |
+
_CONFIG_FOR_DOC = "LLaDAConfig"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
| 44 |
+
def load_balancing_loss_func(
|
| 45 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
| 46 |
+
) -> float:
|
| 47 |
+
r"""
|
| 48 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 49 |
+
|
| 50 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
| 51 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 52 |
+
experts is too unbalanced.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
| 56 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
| 57 |
+
shape [batch_size X sequence_length, num_experts].
|
| 58 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 59 |
+
For diffusion language model, attention_mask is set to None by default.
|
| 60 |
+
If you pass an attention mask and expect the model to use it for computing other attention mechanisms,
|
| 61 |
+
it may lead to logits and aux_loss returned by the model being inconsistent with your expectations.
|
| 62 |
+
num_experts (`int`, *optional*):
|
| 63 |
+
Number of experts
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
The auxiliary loss.
|
| 67 |
+
"""
|
| 68 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
| 69 |
+
return 0
|
| 70 |
+
|
| 71 |
+
if isinstance(gate_logits, tuple):
|
| 72 |
+
compute_device = gate_logits[0].device
|
| 73 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
| 74 |
+
|
| 75 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
| 76 |
+
|
| 77 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
| 78 |
+
|
| 79 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
| 80 |
+
|
| 81 |
+
if attention_mask is None:
|
| 82 |
+
# Compute the percentage of tokens routed to each experts
|
| 83 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
| 84 |
+
|
| 85 |
+
# Compute the average probability of routing to these experts
|
| 86 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
| 87 |
+
else:
|
| 88 |
+
batch_size, sequence_length = attention_mask.shape
|
| 89 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
| 90 |
+
|
| 91 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
| 92 |
+
expert_attention_mask = (
|
| 93 |
+
attention_mask[None, :, :, None, None]
|
| 94 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
| 95 |
+
.reshape(-1, top_k, num_experts)
|
| 96 |
+
.to(compute_device)
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Compute the percentage of tokens routed to each experts
|
| 100 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
| 101 |
+
expert_attention_mask, dim=0
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
| 105 |
+
router_per_expert_attention_mask = (
|
| 106 |
+
attention_mask[None, :, :, None]
|
| 107 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
| 108 |
+
.reshape(-1, num_experts)
|
| 109 |
+
.to(compute_device)
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Compute the average probability of routing to these experts
|
| 113 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
| 114 |
+
router_per_expert_attention_mask, dim=0
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
| 118 |
+
return overall_loss * num_experts
|
| 119 |
+
|
| 120 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeRMSNorm -> LLaDAMoERMSNorm
|
| 121 |
+
class LLaDAMoERMSNorm(nn.Module):
|
| 122 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 123 |
+
"""
|
| 124 |
+
LLaDAMoERMSNorm is equivalent to T5LayerNorm
|
| 125 |
+
"""
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 128 |
+
self.variance_epsilon = eps
|
| 129 |
+
|
| 130 |
+
def forward(self, hidden_states):
|
| 131 |
+
input_dtype = hidden_states.dtype
|
| 132 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 133 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 134 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 135 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 136 |
+
|
| 137 |
+
def extra_repr(self):
|
| 138 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm)
|
| 142 |
+
|
| 143 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeRotaryEmbedding -> LLaDAMoERotaryEmbedding
|
| 144 |
+
class LLaDAMoERotaryEmbedding(nn.Module):
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
dim=None,
|
| 148 |
+
max_position_embeddings=2048,
|
| 149 |
+
base=10000,
|
| 150 |
+
device=None,
|
| 151 |
+
scaling_factor=1.0,
|
| 152 |
+
rope_type="default",
|
| 153 |
+
config: Optional[LLaDAConfig] = None,
|
| 154 |
+
):
|
| 155 |
+
super().__init__()
|
| 156 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 157 |
+
self.rope_kwargs = {}
|
| 158 |
+
if config is None:
|
| 159 |
+
logger.warning_once(
|
| 160 |
+
"`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 161 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 162 |
+
)
|
| 163 |
+
self.rope_kwargs = {
|
| 164 |
+
"rope_type": rope_type,
|
| 165 |
+
"factor": scaling_factor,
|
| 166 |
+
"dim": dim,
|
| 167 |
+
"base": base,
|
| 168 |
+
"max_position_embeddings": max_position_embeddings,
|
| 169 |
+
}
|
| 170 |
+
self.rope_type = rope_type
|
| 171 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 172 |
+
self.original_max_seq_len = max_position_embeddings
|
| 173 |
+
else:
|
| 174 |
+
# BC: "rope_type" was originally "type"
|
| 175 |
+
if config.rope_scaling is not None:
|
| 176 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 177 |
+
else:
|
| 178 |
+
self.rope_type = "default"
|
| 179 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 180 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 181 |
+
|
| 182 |
+
self.config = config
|
| 183 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 184 |
+
|
| 185 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 186 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 187 |
+
self.original_inv_freq = self.inv_freq
|
| 188 |
+
|
| 189 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 190 |
+
"""
|
| 191 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 192 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 193 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 194 |
+
"""
|
| 195 |
+
seq_len = torch.max(position_ids) + 1
|
| 196 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 197 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 198 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 199 |
+
)
|
| 200 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 201 |
+
self.max_seq_len_cached = seq_len
|
| 202 |
+
|
| 203 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 204 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 205 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 206 |
+
|
| 207 |
+
@torch.no_grad()
|
| 208 |
+
def forward(self, x, position_ids):
|
| 209 |
+
if "dynamic" in self.rope_type:
|
| 210 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 211 |
+
|
| 212 |
+
# Core RoPE block
|
| 213 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 214 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 215 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 216 |
+
device_type = x.device.type
|
| 217 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 218 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 219 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 220 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 221 |
+
cos = emb.cos()
|
| 222 |
+
sin = emb.sin()
|
| 223 |
+
|
| 224 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 225 |
+
cos = cos * self.attention_scaling
|
| 226 |
+
sin = sin * self.attention_scaling
|
| 227 |
+
|
| 228 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# copied from transformers.models.olmoe.modeling_olmoe.rotate_half
|
| 232 |
+
def rotate_half(x):
|
| 233 |
+
"""Rotates half the hidden dims of the input."""
|
| 234 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 235 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 236 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# copied from transformers.models.olmoe.modeling_olmoe.apply_rotary_pos_emb
|
| 240 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 241 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
q (`torch.Tensor`): The query tensor.
|
| 245 |
+
k (`torch.Tensor`): The key tensor.
|
| 246 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 247 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 248 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 249 |
+
Deprecated and unused.
|
| 250 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 251 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 252 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 253 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 254 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 255 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 256 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 257 |
+
Returns:
|
| 258 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 259 |
+
"""
|
| 260 |
+
rotary_dim = cos.shape[-1]
|
| 261 |
+
|
| 262 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 263 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 264 |
+
|
| 265 |
+
q_rot = q[..., :rotary_dim]
|
| 266 |
+
q_pass = q[..., rotary_dim:]
|
| 267 |
+
|
| 268 |
+
k_rot = k[..., :rotary_dim]
|
| 269 |
+
k_pass = k[..., rotary_dim:]
|
| 270 |
+
|
| 271 |
+
q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 272 |
+
k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 273 |
+
|
| 274 |
+
q_final = torch.cat((q_rotated, q_pass), dim=-1)
|
| 275 |
+
k_final = torch.cat((k_rotated, k_pass), dim=-1)
|
| 276 |
+
|
| 277 |
+
return q_final, k_final
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeMLP with OlmoeMLP->LLaDAMoEMLP
|
| 281 |
+
class LLaDAMoEMLP(nn.Module):
|
| 282 |
+
def __init__(self, config, mlp_type):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.config = config
|
| 285 |
+
self.hidden_size = config.hidden_size
|
| 286 |
+
if mlp_type == 'dense':
|
| 287 |
+
self.intermediate_size = config.dense_intermediate_size
|
| 288 |
+
elif mlp_type == 'expert':
|
| 289 |
+
self.intermediate_size = config.expert_intermediate_size
|
| 290 |
+
elif mlp_type == 'shared_expert':
|
| 291 |
+
self.intermediate_size = config.shared_expert_intermediate_size
|
| 292 |
+
else:
|
| 293 |
+
assert False, "unknown mlp type"
|
| 294 |
+
|
| 295 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 296 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 297 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 298 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 299 |
+
|
| 300 |
+
def forward(self, x):
|
| 301 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# copied from transformers.models.olmoe.modeling_olmoe.repeat_kv
|
| 305 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 306 |
+
"""
|
| 307 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 308 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 309 |
+
"""
|
| 310 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 311 |
+
if n_rep == 1:
|
| 312 |
+
return hidden_states
|
| 313 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 314 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeAttention with OlmoeAttention->LLaDAMoEAttention
|
| 318 |
+
class LLaDAMoEAttention(nn.Module):
|
| 319 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 320 |
+
|
| 321 |
+
def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None):
|
| 322 |
+
super().__init__()
|
| 323 |
+
self.config = config
|
| 324 |
+
self.layer_idx = layer_idx
|
| 325 |
+
if layer_idx is None:
|
| 326 |
+
logger.warning_once(
|
| 327 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 328 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 329 |
+
"when creating this class."
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
self.attention_dropout = config.attention_dropout
|
| 333 |
+
self.hidden_size = config.hidden_size
|
| 334 |
+
self.num_heads = config.num_attention_heads
|
| 335 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 336 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 337 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 338 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 339 |
+
self.rope_theta = config.rope_theta
|
| 340 |
+
|
| 341 |
+
# **For diffusion language model, we set is_causal to False by default.**
|
| 342 |
+
self.is_causal = False
|
| 343 |
+
|
| 344 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 345 |
+
raise ValueError(
|
| 346 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 347 |
+
f" and `num_heads`: {self.num_heads})."
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 351 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 352 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 353 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
| 354 |
+
if config.qk_layernorm:
|
| 355 |
+
self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 356 |
+
self.k_norm = LLaDAMoERMSNorm(
|
| 357 |
+
self.head_dim, eps=config.rms_norm_eps
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
def forward(
|
| 361 |
+
self,
|
| 362 |
+
hidden_states: torch.Tensor,
|
| 363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 365 |
+
past_key_value: Optional[Cache] = None,
|
| 366 |
+
output_attentions: bool = False,
|
| 367 |
+
use_cache: bool = False,
|
| 368 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 369 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 370 |
+
**kwargs,
|
| 371 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 372 |
+
bsz, q_len, _ = hidden_states.size()
|
| 373 |
+
|
| 374 |
+
query_states = self.q_proj(hidden_states)
|
| 375 |
+
key_states = self.k_proj(hidden_states)
|
| 376 |
+
if 'q_norm' in dir(self):
|
| 377 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 378 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 379 |
+
value_states = self.v_proj(hidden_states)
|
| 380 |
+
|
| 381 |
+
if self.config.clip_qkv is not None:
|
| 382 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 383 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 384 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 385 |
+
|
| 386 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 387 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 388 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 389 |
+
|
| 390 |
+
cos, sin = position_embeddings
|
| 391 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 392 |
+
|
| 393 |
+
if past_key_value is not None:
|
| 394 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 395 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 396 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 397 |
+
|
| 398 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 399 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 400 |
+
|
| 401 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 402 |
+
|
| 403 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 404 |
+
attention_mask = None
|
| 405 |
+
|
| 406 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 407 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 408 |
+
attn_weights = attn_weights + causal_mask
|
| 409 |
+
|
| 410 |
+
# upcast attention to fp32
|
| 411 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 412 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 413 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 414 |
+
|
| 415 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 418 |
+
f" {attn_output.size()}"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 422 |
+
|
| 423 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 424 |
+
|
| 425 |
+
attn_output = self.o_proj(attn_output)
|
| 426 |
+
|
| 427 |
+
if not output_attentions:
|
| 428 |
+
attn_weights = None
|
| 429 |
+
|
| 430 |
+
return attn_output, attn_weights, past_key_value
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
# copied from transformers.models.olmoe.modeling_olmoe.FlashAttention2 with OlmoeFlashAttention2->LLaDAMoEFlashAttention2
|
| 434 |
+
class LLaDAMoEFlashAttention2(LLaDAMoEAttention):
|
| 435 |
+
"""
|
| 436 |
+
LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays
|
| 437 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 438 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 439 |
+
"""
|
| 440 |
+
|
| 441 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeFlashAttention2.__init__
|
| 442 |
+
def __init__(self, *args, **kwargs):
|
| 443 |
+
super().__init__(*args, **kwargs)
|
| 444 |
+
|
| 445 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 446 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 447 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 448 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 449 |
+
|
| 450 |
+
def forward(
|
| 451 |
+
self,
|
| 452 |
+
hidden_states: torch.Tensor,
|
| 453 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 454 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 455 |
+
past_key_value: Optional[Cache] = None,
|
| 456 |
+
output_attentions: bool = False,
|
| 457 |
+
use_cache: bool = False,
|
| 458 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 459 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 460 |
+
**kwargs,
|
| 461 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 462 |
+
output_attentions = False
|
| 463 |
+
|
| 464 |
+
bsz, q_len, _ = hidden_states.size()
|
| 465 |
+
|
| 466 |
+
query_states = self.q_proj(hidden_states)
|
| 467 |
+
key_states = self.k_proj(hidden_states)
|
| 468 |
+
if 'q_norm' in dir(self):
|
| 469 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 470 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 471 |
+
value_states = self.v_proj(hidden_states)
|
| 472 |
+
if self.config.clip_qkv is not None:
|
| 473 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 474 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 475 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 476 |
+
|
| 477 |
+
# Flash attention requires the input to have the shape
|
| 478 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 479 |
+
# therefore we just need to keep the original shape
|
| 480 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 481 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 482 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 483 |
+
|
| 484 |
+
cos, sin = position_embeddings
|
| 485 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 486 |
+
|
| 487 |
+
if past_key_value is not None:
|
| 488 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 489 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 490 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 491 |
+
|
| 492 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 493 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 494 |
+
query_states = query_states.transpose(1, 2)
|
| 495 |
+
key_states = key_states.transpose(1, 2)
|
| 496 |
+
value_states = value_states.transpose(1, 2)
|
| 497 |
+
|
| 498 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 499 |
+
|
| 500 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 501 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 502 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 503 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 504 |
+
# in fp32. (LLaDAMoERMSNorm handles it correctly)
|
| 505 |
+
|
| 506 |
+
input_dtype = query_states.dtype
|
| 507 |
+
if input_dtype == torch.float32:
|
| 508 |
+
if torch.is_autocast_enabled():
|
| 509 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 510 |
+
# Handle the case where the model is quantized
|
| 511 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 512 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 513 |
+
else:
|
| 514 |
+
target_dtype = self.q_proj.weight.dtype
|
| 515 |
+
|
| 516 |
+
logger.warning_once(
|
| 517 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 518 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 519 |
+
f" {target_dtype}."
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
query_states = query_states.to(target_dtype)
|
| 523 |
+
key_states = key_states.to(target_dtype)
|
| 524 |
+
value_states = value_states.to(target_dtype)
|
| 525 |
+
|
| 526 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 527 |
+
attention_mask = None
|
| 528 |
+
self.is_causal = False
|
| 529 |
+
|
| 530 |
+
attn_output = _flash_attention_forward(
|
| 531 |
+
query_states,
|
| 532 |
+
key_states,
|
| 533 |
+
value_states,
|
| 534 |
+
attention_mask,
|
| 535 |
+
q_len,
|
| 536 |
+
dropout=dropout_rate,
|
| 537 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 538 |
+
is_causal=self.is_causal,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 542 |
+
attn_output = self.o_proj(attn_output)
|
| 543 |
+
|
| 544 |
+
if not output_attentions:
|
| 545 |
+
attn_weights = None
|
| 546 |
+
|
| 547 |
+
return attn_output, attn_weights, past_key_value
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeSdpaAttention with OlmoeSdpaAttention->LLaDAMoESdpaAttention
|
| 551 |
+
class LLaDAMoESdpaAttention(LLaDAMoEAttention):
|
| 552 |
+
"""
|
| 553 |
+
LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 554 |
+
`LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 555 |
+
SDPA API.
|
| 556 |
+
"""
|
| 557 |
+
def forward(
|
| 558 |
+
self,
|
| 559 |
+
hidden_states: torch.Tensor,
|
| 560 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 561 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 562 |
+
past_key_value: Optional[Cache] = None,
|
| 563 |
+
output_attentions: bool = False,
|
| 564 |
+
use_cache: bool = False,
|
| 565 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 566 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 567 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 568 |
+
if output_attentions:
|
| 569 |
+
logger.warning_once(
|
| 570 |
+
"LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 571 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 572 |
+
)
|
| 573 |
+
return super().forward(
|
| 574 |
+
hidden_states=hidden_states,
|
| 575 |
+
attention_mask=attention_mask,
|
| 576 |
+
position_ids=position_ids,
|
| 577 |
+
past_key_value=past_key_value,
|
| 578 |
+
output_attentions=output_attentions,
|
| 579 |
+
use_cache=use_cache,
|
| 580 |
+
cache_position=cache_position,
|
| 581 |
+
position_embeddings=position_embeddings,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
bsz, q_len, _ = hidden_states.size()
|
| 585 |
+
|
| 586 |
+
query_states = self.q_proj(hidden_states)
|
| 587 |
+
key_states = self.k_proj(hidden_states)
|
| 588 |
+
if 'q_norm' in dir(self):
|
| 589 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 590 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 591 |
+
value_states = self.v_proj(hidden_states)
|
| 592 |
+
|
| 593 |
+
if self.config.clip_qkv is not None:
|
| 594 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 595 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 596 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 597 |
+
|
| 598 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 599 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 600 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 601 |
+
|
| 602 |
+
cos, sin = position_embeddings
|
| 603 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 604 |
+
|
| 605 |
+
if past_key_value is not None:
|
| 606 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 607 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 608 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 609 |
+
|
| 610 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 611 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 612 |
+
|
| 613 |
+
causal_mask = attention_mask
|
| 614 |
+
# if attention_mask is not None and cache_position is not None:
|
| 615 |
+
if attention_mask is not None:
|
| 616 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 617 |
+
|
| 618 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 619 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 620 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 621 |
+
query_states = query_states.contiguous()
|
| 622 |
+
key_states = key_states.contiguous()
|
| 623 |
+
value_states = value_states.contiguous()
|
| 624 |
+
|
| 625 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 626 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 627 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 628 |
+
|
| 629 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 630 |
+
is_causal = False
|
| 631 |
+
causal_mask = None
|
| 632 |
+
|
| 633 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 634 |
+
query_states,
|
| 635 |
+
key_states,
|
| 636 |
+
value_states,
|
| 637 |
+
attn_mask=causal_mask,
|
| 638 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 639 |
+
is_causal=is_causal,
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 643 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 644 |
+
|
| 645 |
+
attn_output = self.o_proj(attn_output)
|
| 646 |
+
|
| 647 |
+
return attn_output, None, past_key_value
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
LLADAMOE_ATTENTION_CLASSES = {
|
| 651 |
+
"eager": LLaDAMoEAttention,
|
| 652 |
+
"flash_attention_2": LLaDAMoEFlashAttention2,
|
| 653 |
+
"sdpa": LLaDAMoESdpaAttention,
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeSparseMoeBlock with OlmoeSparseMoeBlock->LLaDAMoESparseMoeBlock
|
| 658 |
+
class LLaDAMoESparseMoeBlock(nn.Module):
|
| 659 |
+
def __init__(self, config):
|
| 660 |
+
super().__init__()
|
| 661 |
+
self.num_experts = config.num_experts
|
| 662 |
+
self.top_k = config.num_experts_per_tok
|
| 663 |
+
self.norm_topk_prob = False
|
| 664 |
+
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
|
| 665 |
+
self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)])
|
| 666 |
+
self.score_func = config.moe_router_score_function
|
| 667 |
+
if config.moe_router_enable_expert_bias:
|
| 668 |
+
self.register_buffer("expert_bias", torch.zeros(self.num_experts))
|
| 669 |
+
else:
|
| 670 |
+
self.expert_bias = None
|
| 671 |
+
|
| 672 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 673 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 674 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 675 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 676 |
+
router_logits = self.gate(hidden_states)
|
| 677 |
+
|
| 678 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 679 |
+
|
| 680 |
+
if self.expert_bias is not None:
|
| 681 |
+
routing_weights += self.expert_bias
|
| 682 |
+
|
| 683 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 684 |
+
if self.norm_topk_prob:
|
| 685 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 686 |
+
# we cast back to the input dtype
|
| 687 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 688 |
+
|
| 689 |
+
final_hidden_states = torch.zeros(
|
| 690 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
# One hot encode the selected experts to create an expert mask
|
| 694 |
+
# this will be used to easily index which expert is going to be selected
|
| 695 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 696 |
+
|
| 697 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
| 698 |
+
for expert_idx in range(self.num_experts):
|
| 699 |
+
expert_layer = self.experts[expert_idx]
|
| 700 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 701 |
+
|
| 702 |
+
# Index the correct hidden states and compute the expert hidden state for
|
| 703 |
+
# the current expert. We need to make sure to multiply the output hidden
|
| 704 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
| 705 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
| 706 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
| 707 |
+
|
| 708 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
| 709 |
+
# the `top_x` tensor here.
|
| 710 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 711 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
| 712 |
+
return final_hidden_states
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
class LLaDAMoEDecoderLayer(nn.Module):
|
| 716 |
+
def __init__(self, config: LLaDAConfig, layer_idx: int):
|
| 717 |
+
super().__init__()
|
| 718 |
+
self.hidden_size = config.hidden_size
|
| 719 |
+
self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe'
|
| 720 |
+
|
| 721 |
+
self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 722 |
+
|
| 723 |
+
self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense')
|
| 724 |
+
self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 725 |
+
self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 726 |
+
if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe':
|
| 727 |
+
self.shared_expert = LLaDAMoEMLP(config, 'shared_expert')
|
| 728 |
+
|
| 729 |
+
def forward(
|
| 730 |
+
self,
|
| 731 |
+
hidden_states: torch.Tensor,
|
| 732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 734 |
+
past_key_value: Optional[Cache] = None,
|
| 735 |
+
output_attentions: Optional[bool] = False,
|
| 736 |
+
output_router_logits: Optional[bool] = False,
|
| 737 |
+
use_cache: Optional[bool] = False,
|
| 738 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 739 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 740 |
+
**kwargs,
|
| 741 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 742 |
+
"""
|
| 743 |
+
Args:
|
| 744 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 745 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 746 |
+
For diffusion language model, attention_mask is set to None(full attention).
|
| 747 |
+
output_attentions (`bool`, *optional*):
|
| 748 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 749 |
+
returned tensors for more detail.
|
| 750 |
+
output_router_logits (`bool`, *optional*):
|
| 751 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
| 752 |
+
and should not be returned during inference.
|
| 753 |
+
use_cache (`bool`, *optional*):
|
| 754 |
+
For diffusion language model, use_cache is set to False by default.
|
| 755 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
| 756 |
+
For diffusion language model, past_key_value is set to None by default.
|
| 757 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 758 |
+
For diffusion language model, cache_position is set to None by default.
|
| 759 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 760 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 761 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 762 |
+
kwargs (`dict`, *optional*):
|
| 763 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 764 |
+
into the model
|
| 765 |
+
"""
|
| 766 |
+
residual = hidden_states
|
| 767 |
+
|
| 768 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 769 |
+
|
| 770 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 771 |
+
use_cache = False
|
| 772 |
+
attention_mask = None
|
| 773 |
+
|
| 774 |
+
# Self Attention
|
| 775 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 776 |
+
hidden_states=hidden_states,
|
| 777 |
+
attention_mask=attention_mask,
|
| 778 |
+
position_ids=position_ids,
|
| 779 |
+
past_key_value=past_key_value,
|
| 780 |
+
output_attentions=output_attentions,
|
| 781 |
+
use_cache=use_cache,
|
| 782 |
+
cache_position=cache_position,
|
| 783 |
+
position_embeddings=position_embeddings,
|
| 784 |
+
**kwargs,
|
| 785 |
+
)
|
| 786 |
+
hidden_states = residual + hidden_states
|
| 787 |
+
|
| 788 |
+
# Fully Connected
|
| 789 |
+
residual = hidden_states
|
| 790 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 791 |
+
shared_expert_states = hidden_states
|
| 792 |
+
|
| 793 |
+
hidden_states = self.mlp(hidden_states)
|
| 794 |
+
|
| 795 |
+
if hasattr(self, "shared_expert"):
|
| 796 |
+
hidden_states = hidden_states + self.shared_expert(shared_expert_states)
|
| 797 |
+
hidden_states = residual + hidden_states
|
| 798 |
+
|
| 799 |
+
outputs = (hidden_states,)
|
| 800 |
+
|
| 801 |
+
if output_attentions:
|
| 802 |
+
outputs += (self_attn_weights,)
|
| 803 |
+
|
| 804 |
+
if use_cache:
|
| 805 |
+
outputs += (present_key_value,)
|
| 806 |
+
|
| 807 |
+
return outputs
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
LLADAMOE_START_DOCSTRING = r"""
|
| 811 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 812 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 813 |
+
etc.)
|
| 814 |
+
|
| 815 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 816 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 817 |
+
and behavior.
|
| 818 |
+
|
| 819 |
+
Parameters:
|
| 820 |
+
config ([`LLaDAConfig`]):
|
| 821 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 822 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 823 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 824 |
+
"""
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
@add_start_docstrings(
|
| 828 |
+
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
|
| 829 |
+
LLADAMOE_START_DOCSTRING,
|
| 830 |
+
)
|
| 831 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoePreTrainedModel->LLaDAMoEPreTrainedModel
|
| 832 |
+
class LLaDAMoEPreTrainedModel(PreTrainedModel):
|
| 833 |
+
config_class = LLaDAConfig
|
| 834 |
+
base_model_prefix = "model"
|
| 835 |
+
supports_gradient_checkpointing = True
|
| 836 |
+
_no_split_modules = ["LLaDAMoEDecoderLayer"]
|
| 837 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 838 |
+
_supports_flash_attn_2 = True
|
| 839 |
+
_supports_sdpa = True
|
| 840 |
+
_supports_cache_class = True
|
| 841 |
+
_supports_quantized_cache = True
|
| 842 |
+
_supports_static_cache = True
|
| 843 |
+
|
| 844 |
+
def _init_weights(self, module):
|
| 845 |
+
std = self.config.initializer_range
|
| 846 |
+
if isinstance(module, nn.Linear):
|
| 847 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 848 |
+
if module.bias is not None:
|
| 849 |
+
module.bias.data.zero_()
|
| 850 |
+
elif isinstance(module, nn.Embedding):
|
| 851 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 852 |
+
if module.padding_idx is not None:
|
| 853 |
+
module.weight.data[module.padding_idx].zero_()
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
LLADAMOE_INPUTS_DOCSTRING = r"""
|
| 857 |
+
Args:
|
| 858 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 859 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 860 |
+
it.
|
| 861 |
+
|
| 862 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 863 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 864 |
+
|
| 865 |
+
[What are input IDs?](../glossary#input-ids)
|
| 866 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 867 |
+
Mask to avoid performing attention on padding token indices.
|
| 868 |
+
**For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 869 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 870 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 871 |
+
config.n_positions - 1]`.
|
| 872 |
+
|
| 873 |
+
[What are position IDs?](../glossary#position-ids)
|
| 874 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 875 |
+
**For diffusion language model, past_key_values can not be applied by default.**
|
| 876 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 877 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 878 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 879 |
+
model's internal embedding lookup matrix.
|
| 880 |
+
use_cache (`bool`, *optional*):
|
| 881 |
+
For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting.
|
| 882 |
+
output_attentions (`bool`, *optional*):
|
| 883 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 884 |
+
tensors for more detail.
|
| 885 |
+
output_hidden_states (`bool`, *optional*):
|
| 886 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 887 |
+
more detail.
|
| 888 |
+
output_router_logits (`bool`, *optional*):
|
| 889 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
| 890 |
+
should not be returned during inference.
|
| 891 |
+
return_dict (`bool`, *optional*):
|
| 892 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 893 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 894 |
+
**For diffusion language model, cache_position can not be applied by default.**
|
| 895 |
+
"""
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
@add_start_docstrings(
|
| 899 |
+
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
|
| 900 |
+
LLADAMOE_START_DOCSTRING,
|
| 901 |
+
)
|
| 902 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoeModel->LLaDAMoEModel
|
| 903 |
+
class LLaDAMoEModel(LLaDAMoEPreTrainedModel):
|
| 904 |
+
"""
|
| 905 |
+
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`]
|
| 906 |
+
|
| 907 |
+
Args:
|
| 908 |
+
config: LLaDAConfig
|
| 909 |
+
"""
|
| 910 |
+
|
| 911 |
+
def __init__(self, config: LLaDAConfig):
|
| 912 |
+
super().__init__(config)
|
| 913 |
+
self.padding_idx = config.pad_token_id
|
| 914 |
+
self.vocab_size = config.vocab_size
|
| 915 |
+
|
| 916 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 917 |
+
self.layers = nn.ModuleList(
|
| 918 |
+
[LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 919 |
+
)
|
| 920 |
+
self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 921 |
+
self.rotary_emb = LLaDAMoERotaryEmbedding(config=config)
|
| 922 |
+
self.gradient_checkpointing = False
|
| 923 |
+
|
| 924 |
+
# Initialize weights and apply final processing
|
| 925 |
+
self.post_init()
|
| 926 |
+
|
| 927 |
+
def get_input_embeddings(self):
|
| 928 |
+
return self.embed_tokens
|
| 929 |
+
|
| 930 |
+
def set_input_embeddings(self, value):
|
| 931 |
+
self.embed_tokens = value
|
| 932 |
+
|
| 933 |
+
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
|
| 934 |
+
def forward(
|
| 935 |
+
self,
|
| 936 |
+
input_ids: torch.LongTensor = None,
|
| 937 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 938 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 939 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 940 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 941 |
+
use_cache: Optional[bool] = None,
|
| 942 |
+
output_attentions: Optional[bool] = None,
|
| 943 |
+
output_hidden_states: Optional[bool] = None,
|
| 944 |
+
output_router_logits: Optional[bool] = None,
|
| 945 |
+
return_dict: Optional[bool] = None,
|
| 946 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 947 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 948 |
+
assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default."
|
| 949 |
+
|
| 950 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 951 |
+
output_router_logits = (
|
| 952 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 953 |
+
)
|
| 954 |
+
output_hidden_states = (
|
| 955 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 956 |
+
)
|
| 957 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 958 |
+
|
| 959 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 960 |
+
raise ValueError(
|
| 961 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
if inputs_embeds is None:
|
| 965 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 966 |
+
|
| 967 |
+
return_legacy_cache = False
|
| 968 |
+
if cache_position is None:
|
| 969 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 970 |
+
cache_position = torch.arange(
|
| 971 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 972 |
+
)
|
| 973 |
+
if position_ids is None:
|
| 974 |
+
position_ids = cache_position.unsqueeze(0)
|
| 975 |
+
|
| 976 |
+
causal_mask = None
|
| 977 |
+
logger.warning_once(
|
| 978 |
+
f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. "
|
| 979 |
+
f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, "
|
| 980 |
+
f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. "
|
| 981 |
+
f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, "
|
| 982 |
+
f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. "
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
# embed positions
|
| 986 |
+
hidden_states = inputs_embeds
|
| 987 |
+
|
| 988 |
+
# create position embeddings to be shared across the decoder layers
|
| 989 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 990 |
+
|
| 991 |
+
# decoder layers
|
| 992 |
+
all_hidden_states = () if output_hidden_states else None
|
| 993 |
+
all_self_attns = () if output_attentions else None
|
| 994 |
+
all_router_logits = () if output_router_logits else None
|
| 995 |
+
next_decoder_cache = None
|
| 996 |
+
|
| 997 |
+
for decoder_layer in self.layers:
|
| 998 |
+
if output_hidden_states:
|
| 999 |
+
all_hidden_states += (hidden_states,)
|
| 1000 |
+
|
| 1001 |
+
if self.gradient_checkpointing and self.training:
|
| 1002 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1003 |
+
decoder_layer.__call__,
|
| 1004 |
+
hidden_states,
|
| 1005 |
+
causal_mask,
|
| 1006 |
+
position_ids,
|
| 1007 |
+
past_key_values,
|
| 1008 |
+
output_attentions,
|
| 1009 |
+
output_router_logits,
|
| 1010 |
+
use_cache,
|
| 1011 |
+
cache_position,
|
| 1012 |
+
position_embeddings,
|
| 1013 |
+
)
|
| 1014 |
+
else:
|
| 1015 |
+
layer_outputs = decoder_layer(
|
| 1016 |
+
hidden_states,
|
| 1017 |
+
attention_mask=causal_mask,
|
| 1018 |
+
position_ids=position_ids,
|
| 1019 |
+
past_key_value=past_key_values,
|
| 1020 |
+
output_attentions=output_attentions,
|
| 1021 |
+
output_router_logits=output_router_logits,
|
| 1022 |
+
use_cache=use_cache,
|
| 1023 |
+
cache_position=cache_position,
|
| 1024 |
+
position_embeddings=position_embeddings,
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
hidden_states = layer_outputs[0]
|
| 1028 |
+
|
| 1029 |
+
if use_cache:
|
| 1030 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1031 |
+
|
| 1032 |
+
if output_attentions:
|
| 1033 |
+
all_self_attns += (layer_outputs[1],)
|
| 1034 |
+
|
| 1035 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
| 1036 |
+
all_router_logits += (layer_outputs[-1],)
|
| 1037 |
+
|
| 1038 |
+
hidden_states = self.norm(hidden_states)
|
| 1039 |
+
|
| 1040 |
+
# add hidden states from the last layer
|
| 1041 |
+
if output_hidden_states:
|
| 1042 |
+
all_hidden_states += (hidden_states,)
|
| 1043 |
+
|
| 1044 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1045 |
+
if return_legacy_cache:
|
| 1046 |
+
next_cache = next_cache.to_legacy_cache()
|
| 1047 |
+
|
| 1048 |
+
if not return_dict:
|
| 1049 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1050 |
+
return MoeModelOutputWithPast(
|
| 1051 |
+
last_hidden_state=hidden_states,
|
| 1052 |
+
past_key_values=next_cache,
|
| 1053 |
+
hidden_states=all_hidden_states,
|
| 1054 |
+
attentions=all_self_attns,
|
| 1055 |
+
router_logits=all_router_logits,
|
| 1056 |
+
)
|
| 1057 |
+
|
| 1058 |
+
|
| 1059 |
+
class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel):
|
| 1060 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1061 |
+
|
| 1062 |
+
def __init__(self, config):
|
| 1063 |
+
super().__init__(config)
|
| 1064 |
+
self.model = LLaDAMoEModel(config)
|
| 1065 |
+
self.vocab_size = config.vocab_size
|
| 1066 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1067 |
+
|
| 1068 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 1069 |
+
self.num_experts = config.num_experts
|
| 1070 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 1071 |
+
# Initialize weights and apply final processing
|
| 1072 |
+
self.post_init()
|
| 1073 |
+
|
| 1074 |
+
def get_input_embeddings(self):
|
| 1075 |
+
return self.model.embed_tokens
|
| 1076 |
+
|
| 1077 |
+
def set_input_embeddings(self, value):
|
| 1078 |
+
self.model.embed_tokens = value
|
| 1079 |
+
|
| 1080 |
+
def get_output_embeddings(self):
|
| 1081 |
+
return self.lm_head
|
| 1082 |
+
|
| 1083 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1084 |
+
self.lm_head = new_embeddings
|
| 1085 |
+
|
| 1086 |
+
def set_decoder(self, decoder):
|
| 1087 |
+
self.model = decoder
|
| 1088 |
+
|
| 1089 |
+
def get_decoder(self):
|
| 1090 |
+
return self.model
|
| 1091 |
+
|
| 1092 |
+
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
|
| 1093 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1094 |
+
def forward(
|
| 1095 |
+
self,
|
| 1096 |
+
input_ids: torch.LongTensor = None,
|
| 1097 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1098 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1099 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1100 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1101 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1102 |
+
use_cache: Optional[bool] = None,
|
| 1103 |
+
output_attentions: Optional[bool] = None,
|
| 1104 |
+
output_hidden_states: Optional[bool] = None,
|
| 1105 |
+
output_router_logits: Optional[bool] = None,
|
| 1106 |
+
return_dict: Optional[bool] = None,
|
| 1107 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1108 |
+
num_logits_to_keep: int = 0,
|
| 1109 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 1110 |
+
r"""
|
| 1111 |
+
For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported.
|
| 1112 |
+
Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs.
|
| 1113 |
+
|
| 1114 |
+
Returns:
|
| 1115 |
+
|
| 1116 |
+
Example:
|
| 1117 |
+
|
| 1118 |
+
```python
|
| 1119 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
| 1120 |
+
|
| 1121 |
+
>>> model = AutoModel.from_pretrained("path/to/LLaDAMoE")
|
| 1122 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE")
|
| 1123 |
+
|
| 1124 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1125 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1126 |
+
|
| 1127 |
+
>>> # Generate
|
| 1128 |
+
>>> generate_ids = generate() # Please use the customized generate method instead of model.generate().
|
| 1129 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1130 |
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
| 1131 |
+
```
|
| 1132 |
+
"""
|
| 1133 |
+
assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass."
|
| 1134 |
+
|
| 1135 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1136 |
+
output_router_logits = (
|
| 1137 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1138 |
+
)
|
| 1139 |
+
output_hidden_states = (
|
| 1140 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1141 |
+
)
|
| 1142 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1143 |
+
|
| 1144 |
+
outputs = self.model(
|
| 1145 |
+
input_ids=input_ids,
|
| 1146 |
+
attention_mask=attention_mask,
|
| 1147 |
+
position_ids=position_ids,
|
| 1148 |
+
past_key_values=past_key_values,
|
| 1149 |
+
inputs_embeds=inputs_embeds,
|
| 1150 |
+
use_cache=use_cache,
|
| 1151 |
+
output_attentions=output_attentions,
|
| 1152 |
+
output_hidden_states=output_hidden_states,
|
| 1153 |
+
output_router_logits=output_router_logits,
|
| 1154 |
+
return_dict=return_dict,
|
| 1155 |
+
cache_position=cache_position,
|
| 1156 |
+
)
|
| 1157 |
+
|
| 1158 |
+
hidden_states = outputs[0]
|
| 1159 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 1160 |
+
|
| 1161 |
+
loss = None
|
| 1162 |
+
|
| 1163 |
+
aux_loss = None
|
| 1164 |
+
if output_router_logits:
|
| 1165 |
+
aux_loss = load_balancing_loss_func(
|
| 1166 |
+
outputs.router_logits if return_dict else outputs[-1],
|
| 1167 |
+
self.num_experts,
|
| 1168 |
+
self.num_experts_per_tok,
|
| 1169 |
+
attention_mask,
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
if not return_dict:
|
| 1173 |
+
output = (logits,) + outputs[1:]
|
| 1174 |
+
if output_router_logits:
|
| 1175 |
+
output = (aux_loss,) + output
|
| 1176 |
+
return (loss,) + output if loss is not None else output
|
| 1177 |
+
|
| 1178 |
+
return MoeCausalLMOutputWithPast(
|
| 1179 |
+
loss=loss,
|
| 1180 |
+
aux_loss=aux_loss,
|
| 1181 |
+
logits=logits,
|
| 1182 |
+
past_key_values=outputs.past_key_values,
|
| 1183 |
+
hidden_states=outputs.hidden_states,
|
| 1184 |
+
attentions=outputs.attentions,
|
| 1185 |
+
router_logits=outputs.router_logits,
|
| 1186 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|startoftext|>",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "<|endoftext|>",
|
| 5 |
+
"gmask_token": "[gMASK]",
|
| 6 |
+
"pad_token": "<|endoftext|>"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": "<|startoftext|>",
|
| 5 |
+
"chat_template": "{% set thinking_option = 'off' %}\n{{- '<role>SYSTEM</role>' }}\n{%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n' }}\n{%- endif %}\n{%- if tools %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\" }}\n{%- endif %}\n{{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if message.role == \"user\" %}\n {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"system\" and not loop.first %}\n {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<role>ASSISTANT</role>' + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|role_end|>' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<role>OBSERVATION</role>' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|role_end|>' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<role>ASSISTANT</role>' }}\n{%- endif %}",
|
| 6 |
+
"clean_up_tokenization_spaces": false,
|
| 7 |
+
"cls_token": "[CLS]",
|
| 8 |
+
"eos_token": "<|endoftext|>",
|
| 9 |
+
"fast_tokenizer": true,
|
| 10 |
+
"gmask_token": "[gMASK]",
|
| 11 |
+
"merges_file": null,
|
| 12 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 13 |
+
"pad_token": "<|endoftext|>",
|
| 14 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 15 |
+
"trust_remote_code": true,
|
| 16 |
+
"vocab_file": null
|
| 17 |
+
}
|