First model version
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- README.md +139 -0
- config.json +55 -0
- configuration_llada2_moe.py +85 -0
- generation_config.json +7 -0
- model-00001-of-00042.safetensors +3 -0
- model-00002-of-00042.safetensors +3 -0
- model-00003-of-00042.safetensors +3 -0
- model-00004-of-00042.safetensors +3 -0
- model-00005-of-00042.safetensors +3 -0
- model-00006-of-00042.safetensors +3 -0
- model-00007-of-00042.safetensors +3 -0
- model-00008-of-00042.safetensors +3 -0
- model-00009-of-00042.safetensors +3 -0
- model-00010-of-00042.safetensors +3 -0
- model-00011-of-00042.safetensors +3 -0
- model-00012-of-00042.safetensors +3 -0
- model-00013-of-00042.safetensors +3 -0
- model-00014-of-00042.safetensors +3 -0
- model-00015-of-00042.safetensors +3 -0
- model-00016-of-00042.safetensors +3 -0
- model-00017-of-00042.safetensors +3 -0
- model-00018-of-00042.safetensors +3 -0
- model-00019-of-00042.safetensors +3 -0
- model-00020-of-00042.safetensors +3 -0
- model-00021-of-00042.safetensors +3 -0
- model-00022-of-00042.safetensors +3 -0
- model-00023-of-00042.safetensors +3 -0
- model-00024-of-00042.safetensors +3 -0
- model-00025-of-00042.safetensors +3 -0
- model-00026-of-00042.safetensors +3 -0
- model-00027-of-00042.safetensors +3 -0
- model-00028-of-00042.safetensors +3 -0
- model-00029-of-00042.safetensors +3 -0
- model-00030-of-00042.safetensors +3 -0
- model-00031-of-00042.safetensors +3 -0
- model-00032-of-00042.safetensors +3 -0
- model-00033-of-00042.safetensors +3 -0
- model-00034-of-00042.safetensors +3 -0
- model-00035-of-00042.safetensors +3 -0
- model-00036-of-00042.safetensors +3 -0
- model-00037-of-00042.safetensors +3 -0
- model-00038-of-00042.safetensors +3 -0
- model-00039-of-00042.safetensors +3 -0
- model-00040-of-00042.safetensors +3 -0
- model-00041-of-00042.safetensors +3 -0
- model-00042-of-00042.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_llada2_moe.py +1621 -0
- special_tokens_map.json +8 -0
- tokenizer.json +0 -0
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,142 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: apache-2.0
         | 
| 3 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: apache-2.0
         | 
| 3 | 
             
            ---
         | 
| 4 | 
            +
            DA2.0-flash-preview
         | 
| 5 | 
            +
            **LLaDA2-flash-preview** is a diffusion language model featuring a 100BA6B Mixture-of-Experts (MoE) architecture. As an enhanced, instruction-tuned iteration of the LLaDA series, it is optimized for practical applications.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            <div align="center">
         | 
| 8 | 
            +
              <img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*kLORSaRfSK8AAAAAgIAAAAgAemJ7AQ/original" width="800" />
         | 
| 9 | 
            +
            </div>
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            | Benchmark | Ling-flash-2.0 | LLaDA2.0-mini-preview | LLaDA2.0-flash-preview |
         | 
| 14 | 
            +
            | :------------------------------ | :-------------: | :-------------------------: | :---------------------: |
         | 
| 15 | 
            +
            | **Average** | 79.93 | 66.59 | 77.03 |
         | 
| 16 | 
            +
            | **Knowledge** | | | |
         | 
| 17 | 
            +
            | MMLU | 87.98 | 72.49 | 83.15 |
         | 
| 18 | 
            +
            | MMLU-PRO | 76.84 | 49.22 | 66.16 |
         | 
| 19 | 
            +
            | CMMLU | 86.59 | 67.53 | 79.64 |
         | 
| 20 | 
            +
            | C-EVAL | 88.03 | 66.54 | 79.28 |
         | 
| 21 | 
            +
            | **Reasoning** | | | |
         | 
| 22 | 
            +
            | squad2.0 | 81.32 | 85.61 | 90.61 |
         | 
| 23 | 
            +
            | drop | 88.32 | 79.49 | 88.17 |
         | 
| 24 | 
            +
            | korbench | 68.96 | 37.26 | 53.28 |
         | 
| 25 | 
            +
            | **Coding** | | | |
         | 
| 26 | 
            +
            | CruxEval-O | 82.75 | 61.88 | 74.50 |
         | 
| 27 | 
            +
            | mbpp | 85.01 | 77.75 | 86.65 |
         | 
| 28 | 
            +
            | MultiPL-E | 65.76 | 62.43 | 72.38 |
         | 
| 29 | 
            +
            | humaneval | 85.98 | 80.49 | 88.41 |
         | 
| 30 | 
            +
            | Bigcodebench-Full | 40.70 | 30.44 | 40.44 |
         | 
| 31 | 
            +
            | **Math** | | | |
         | 
| 32 | 
            +
            | GSM8K | 95.45 | 89.01 | 95.75 |
         | 
| 33 | 
            +
            | math | 96.1 | 73.50 | 83.52 |
         | 
| 34 | 
            +
            | **Agent & Alignment** | | | |
         | 
| 35 | 
            +
            | BFCL_Live | 67.57 | 74.11 | 74.86 |
         | 
| 36 | 
            +
            | IFEval-strict -prompt | 81.52 | 62.50 | 75.60 |
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            ## 🚀 Performance Highlights
         | 
| 41 | 
            +
            + **Leading MoE Architecture**:
         | 
| 42 | 
            +
            The open-source **Mixture-of-Experts (MoE) diffusion large language model**, pre-trained from scratch on approximately **20 trillion tokens**.
         | 
| 43 | 
            +
            + **Efficient Inference**:
         | 
| 44 | 
            +
            With **100 billion total parameters**, only **6.1 billion** are activated during inference. LLaDA-flash-preview significantly reduces computational costs while outperforming open-source dense models of similar scale.
         | 
| 45 | 
            +
            + **Impressive Performance on Code & Complex Reasoning**:
         | 
| 46 | 
            +
            Excels in tasks such as **code generation** and **advanced mathematical reasoning**, demonstrating strong reasoning capabilities.
         | 
| 47 | 
            +
            + **Tool Use**:
         | 
| 48 | 
            +
            Supports **tool calling** and achieves excellent performance in complex agent-based tasks.
         | 
| 49 | 
            +
            + **Open & Extensible**:
         | 
| 50 | 
            +
            Fully open-source with commitment to transparency. We plan to release a **leading inference framework** in the future and continue investing in cutting-edge areas like **diffusion LLMs (dLLM)** to drive disruptive innovation.
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            ## 🗺️ What's Next
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            + **Supercharged Reasoning with LLaDA 2.0:** LLaDA 2.0 series will be fine-tuned with **Reinforcement Learning**, unlocking a new level of sophisticated reasoning and problem-solving abilities.
         | 
| 55 | 
            +
            + **Tools for Innovators:** we will release a **detailed tutorial** and our complete **post-training framework**. Whether you want to master the current model or build your own customized versions, you'll have the tools you need. Stay tuned
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            ---
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ## 📦 Model Variants
         | 
| 60 | 
            +
            | Model ID | Description | Hugging Face Link |
         | 
| 61 | 
            +
            | --- | --- | --- |
         | 
| 62 | 
            +
            | `inclusionAI/LLaDA2-mini-preview` | Instruction-tuned model, ready for downstream applications. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA2.0-mini-preview) |
         | 
| 63 | 
            +
            | `inclusionAI/LLaDA2-flash-preview` | Instruction-tuned model, ready for downstream applications. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA2.0-flash-preview) |
         | 
| 64 | 
            +
             | 
| 65 | 
            +
             | 
| 66 | 
            +
            ---
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            ## 🔍 Model Overview
         | 
| 69 | 
            +
            **LLaDA2.0-flash-preview** has the following specifications:
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            + **Type**: Mixture-of-Experts (MoE) Diffusion Language Model
         | 
| 72 | 
            +
            + **Total Parameters (Non-Embedding)**: 100B
         | 
| 73 | 
            +
            + **Number of Layers**: 32
         | 
| 74 | 
            +
            + **Attention Heads**: 32
         | 
| 75 | 
            +
            + **Context Length**: 4,096 tokens
         | 
| 76 | 
            +
            + **Position Embedding**: Rotary (RoPE)
         | 
| 77 | 
            +
            + **Vocabulary Size**: 157,184
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            ---
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            ### 🤗 Hugging Face Transformers
         | 
| 82 | 
            +
            Make sure you have `transformers` and its dependencies installed:
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ```python
         | 
| 85 | 
            +
            import torch
         | 
| 86 | 
            +
            import torch.nn.functional as F
         | 
| 87 | 
            +
            from transformers import AutoModelForCausalLM
         | 
| 88 | 
            +
            from transformers import AutoTokenizer
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            model_path = "/path/to/LLaDA2-mini-preview"
         | 
| 91 | 
            +
            device = "auto"
         | 
| 92 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 93 | 
            +
                model_path, trust_remote_code=True, device_map=device
         | 
| 94 | 
            +
            )
         | 
| 95 | 
            +
            model = model.to(torch.bfloat16)
         | 
| 96 | 
            +
            model.eval()
         | 
| 97 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            prompt = "Why does Camus think that Sisyphus is happy?"
         | 
| 100 | 
            +
            input_ids = tokenizer.apply_chat_template(
         | 
| 101 | 
            +
                [{"role": "user", "content": prompt}],
         | 
| 102 | 
            +
                add_generation_prompt=True,
         | 
| 103 | 
            +
                tokenize=True,
         | 
| 104 | 
            +
                return_tensors="pt",
         | 
| 105 | 
            +
            )
         | 
| 106 | 
            +
            generated_tokens = model.generate(
         | 
| 107 | 
            +
                inputs=input_ids,
         | 
| 108 | 
            +
                eos_early_stop=True,
         | 
| 109 | 
            +
                gen_length=512,
         | 
| 110 | 
            +
                block_length=32,
         | 
| 111 | 
            +
                steps=32,
         | 
| 112 | 
            +
                temperature=0.0,
         | 
| 113 | 
            +
            )
         | 
| 114 | 
            +
            generated_answer = tokenizer.decode(
         | 
| 115 | 
            +
                generated_tokens[0],
         | 
| 116 | 
            +
                skip_special_tokens=True,
         | 
| 117 | 
            +
            )
         | 
| 118 | 
            +
            print(generated_answer)
         | 
| 119 | 
            +
            ```
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            ### Best Practices
         | 
| 122 | 
            +
            To achieve optimal performance, we recommend the following settings:
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            1. **Sampling Parameters**:
         | 
| 125 | 
            +
               We suggest using `Temperature=0.0`, `block_length=32`, and `steps=32`. Using a higher temperature value may occasionally result in language mixing and a slight decrease in model performance.
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            2. **Adequate Output Length**:
         | 
| 128 | 
            +
               We recommend using an output length of 2048 tokens for most queries. For benchmarking on problems require more output length, such as those found in math and programming competitions, we suggest setting the max output length to 4096 tokens.
         | 
| 129 | 
            +
             | 
| 130 | 
            +
             | 
| 131 | 
            +
            ---
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            ## 🌐 License
         | 
| 134 | 
            +
            This project is licensed under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ---
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            ## 🤝 Contact & Collaboration
         | 
| 139 | 
            +
            For questions, collaborations, or feedback, please reach out via [Hugging Face](https://huggingface.co/inclusionAI/LLaDA2.0-mini-preview) or open an issue in the [repository](https://github.com/inclusionAI).
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            👉 Join us in advancing open, efficient, and intelligent language models!
         | 
| 142 | 
            +
             | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,55 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "architectures": [
         | 
| 3 | 
            +
                    "LLaDA2MoeModelLM"
         | 
| 4 | 
            +
                ],
         | 
| 5 | 
            +
                "attention_dropout": 0.0,
         | 
| 6 | 
            +
                "auto_map": {
         | 
| 7 | 
            +
                    "AutoConfig": "configuration_llada2_moe.LLaDA2MoeConfig",
         | 
| 8 | 
            +
                    "AutoModel": "modeling_llada2_moe.LLaDA2MoeModel",
         | 
| 9 | 
            +
                    "AutoModelForCausalLM": "modeling_llada2_moe.LLaDA2MoeModelLM"
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "num_hidden_layers": 32,
         | 
| 12 | 
            +
                "hidden_size": 4096,
         | 
| 13 | 
            +
                "intermediate_size": 9216,
         | 
| 14 | 
            +
                "first_k_dense_replace": 1,
         | 
| 15 | 
            +
                "hidden_act": "silu",
         | 
| 16 | 
            +
                "max_position_embeddings": 16384,
         | 
| 17 | 
            +
                "model_type": "llada2_moe",
         | 
| 18 | 
            +
                "moe_intermediate_size": 1024,
         | 
| 19 | 
            +
                "norm_topk_prob": true,
         | 
| 20 | 
            +
                "num_experts_per_tok": 8,
         | 
| 21 | 
            +
                "norm_head": false,
         | 
| 22 | 
            +
                "num_attention_heads": 32,
         | 
| 23 | 
            +
                "num_experts": 256,
         | 
| 24 | 
            +
                "num_key_value_heads": 4,
         | 
| 25 | 
            +
                "rope_theta": 600000,
         | 
| 26 | 
            +
                "rope_scaling": null,
         | 
| 27 | 
            +
                "tie_word_embeddings": false,
         | 
| 28 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 29 | 
            +
                "transformers_version": "4.52.3",
         | 
| 30 | 
            +
                "use_bias": false,
         | 
| 31 | 
            +
                "use_rmsnorm": true,
         | 
| 32 | 
            +
                "rms_norm_eps": 1e-06,
         | 
| 33 | 
            +
                "head_dim": 128,
         | 
| 34 | 
            +
                "num_shared_experts": 1,
         | 
| 35 | 
            +
                "use_cache": true,
         | 
| 36 | 
            +
                "use_qkv_bias": false,
         | 
| 37 | 
            +
                "embedding_dropout": 0.0,
         | 
| 38 | 
            +
                "norm_softmax": false,
         | 
| 39 | 
            +
                "output_dropout": 0.0,
         | 
| 40 | 
            +
                "vocab_size": 157184,
         | 
| 41 | 
            +
                "rotary_dim": 64,
         | 
| 42 | 
            +
                "using_split_qkv_in_self_attention": false,
         | 
| 43 | 
            +
                "router_dtype": "fp32",
         | 
| 44 | 
            +
                "moe_router_enable_expert_bias": true,
         | 
| 45 | 
            +
                "routed_scaling_factor": 2.5,
         | 
| 46 | 
            +
                "n_group": 8,
         | 
| 47 | 
            +
                "topk_group": 4,
         | 
| 48 | 
            +
                "score_function": "sigmoid",
         | 
| 49 | 
            +
                "initializer_range": 0.02,
         | 
| 50 | 
            +
                "max_window_layers": 28,
         | 
| 51 | 
            +
                "output_router_logits": false,
         | 
| 52 | 
            +
                "pad_token_id": 156892,
         | 
| 53 | 
            +
                "partial_rotary_factor": 0.5,
         | 
| 54 | 
            +
                "use_sliding_window": false
         | 
| 55 | 
            +
            }
         | 
    	
        configuration_llada2_moe.py
    ADDED
    
    | @@ -0,0 +1,85 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """LLaDA2 MoE model configuration"""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class LLaDA2MoeConfig(PretrainedConfig):
         | 
| 7 | 
            +
                model_type = "llada2_moe"
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                def __init__(
         | 
| 10 | 
            +
                    self,
         | 
| 11 | 
            +
                    vocab_size=30592,
         | 
| 12 | 
            +
                    hidden_size=1024,
         | 
| 13 | 
            +
                    intermediate_size=None,
         | 
| 14 | 
            +
                    num_hidden_layers=24,
         | 
| 15 | 
            +
                    num_attention_heads=16,
         | 
| 16 | 
            +
                    num_key_value_heads=0,
         | 
| 17 | 
            +
                    hidden_act="silu",
         | 
| 18 | 
            +
                    use_qkv_bias=False,  # llada2 only
         | 
| 19 | 
            +
                    use_qk_norm=False,
         | 
| 20 | 
            +
                    use_bias=True,  # llada2 only
         | 
| 21 | 
            +
                    rms_norm_eps=1e-05,
         | 
| 22 | 
            +
                    norm_head=False,  # llada2 only
         | 
| 23 | 
            +
                    tie_word_embeddings=False,  # PretrainedConfig key, here change default value.
         | 
| 24 | 
            +
                    embedding_dropout=0.1,
         | 
| 25 | 
            +
                    attention_dropout=0.1,
         | 
| 26 | 
            +
                    output_dropout=0.1,
         | 
| 27 | 
            +
                    initializer_range=0.02,
         | 
| 28 | 
            +
                    max_position_embeddings=16384,
         | 
| 29 | 
            +
                    rope_theta=10000.0,
         | 
| 30 | 
            +
                    use_cache=True,
         | 
| 31 | 
            +
                    use_sliding_window=False,
         | 
| 32 | 
            +
                    sliding_window=4096,
         | 
| 33 | 
            +
                    max_window_layers=28,
         | 
| 34 | 
            +
                    rope_scaling=None,
         | 
| 35 | 
            +
                    pad_token_id=126081,
         | 
| 36 | 
            +
                    num_experts=16,
         | 
| 37 | 
            +
                    num_shared_experts=0,
         | 
| 38 | 
            +
                    num_experts_per_tok=2,
         | 
| 39 | 
            +
                    n_group=8,
         | 
| 40 | 
            +
                    topk_group=4,
         | 
| 41 | 
            +
                    routed_scaling_factor=2.5,
         | 
| 42 | 
            +
                    moe_intermediate_size=None,
         | 
| 43 | 
            +
                    first_k_dense_replace=0,
         | 
| 44 | 
            +
                    head_dim=None,
         | 
| 45 | 
            +
                    output_router_logits=False,
         | 
| 46 | 
            +
                    partial_rotary_factor=0.5,
         | 
| 47 | 
            +
                    **kwargs,
         | 
| 48 | 
            +
                ):
         | 
| 49 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 50 | 
            +
                    self.vocab_size = vocab_size
         | 
| 51 | 
            +
                    self.hidden_size = hidden_size
         | 
| 52 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 53 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 54 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 55 | 
            +
                    self.hidden_act = hidden_act
         | 
| 56 | 
            +
                    self.use_qkv_bias = use_qkv_bias
         | 
| 57 | 
            +
                    self.use_bias = use_bias
         | 
| 58 | 
            +
                    self.norm_head = norm_head
         | 
| 59 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 60 | 
            +
                    self.embedding_dropout = embedding_dropout
         | 
| 61 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 62 | 
            +
                    self.output_dropout = output_dropout
         | 
| 63 | 
            +
                    self.initializer_range = initializer_range
         | 
| 64 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 65 | 
            +
                    self.rope_theta = rope_theta
         | 
| 66 | 
            +
                    self.use_cache = use_cache
         | 
| 67 | 
            +
                    self.use_sliding_window = use_sliding_window
         | 
| 68 | 
            +
                    self.sliding_window = sliding_window
         | 
| 69 | 
            +
                    self.max_window_layers = max_window_layers
         | 
| 70 | 
            +
                    self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
         | 
| 71 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    # MoE configs
         | 
| 74 | 
            +
                    self.num_experts = num_experts
         | 
| 75 | 
            +
                    self.num_shared_experts = num_shared_experts
         | 
| 76 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 77 | 
            +
                    self.n_group = n_group
         | 
| 78 | 
            +
                    self.topk_group = topk_group
         | 
| 79 | 
            +
                    self.moe_intermediate_size = moe_intermediate_size
         | 
| 80 | 
            +
                    self.first_k_dense_replace = first_k_dense_replace
         | 
| 81 | 
            +
                    self.output_router_logits = output_router_logits
         | 
| 82 | 
            +
                    self.routed_scaling_factor = routed_scaling_factor
         | 
| 83 | 
            +
                    self.partial_rotary_factor = partial_rotary_factor
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    super().__init__(pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "eos_token_id": 156892,
         | 
| 4 | 
            +
              "pad_token_id": 156892,
         | 
| 5 | 
            +
              "transformers_version": "4.46.3",
         | 
| 6 | 
            +
              "use_cache": false
         | 
| 7 | 
            +
            }
         | 
    	
        model-00001-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cae1f1899b726a1efb16c72e33e4ae18d708fadeb681f4063a3e2728be55cc3c
         | 
| 3 | 
            +
            size 4995489472
         | 
    	
        model-00002-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7d763bf5c5f0869a744dd5d50b24caf28a3dac62d76786b1a8cf3ba32f55bf28
         | 
| 3 | 
            +
            size 4993392768
         | 
    	
        model-00003-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:abc81bc508ea43b4545bddcc9ea38df2d950386cf0812c67f45bea0a2ecf947d
         | 
| 3 | 
            +
            size 4995490120
         | 
    	
        model-00004-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:dd65defd15bcf04e7c8ce049e488253f403a78adaf1a5f806e3cb45d661298bc
         | 
| 3 | 
            +
            size 4997586864
         | 
    	
        model-00005-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fd81380decf776ce43753d3d0c2ef4a6b0088790cdce4ef69cf9c195466e5583
         | 
| 3 | 
            +
            size 4374723752
         | 
    	
        model-00006-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:328248165afb3c2eed928505cf40c47bf448b26e2865b82bd996b5c6ffea6f21
         | 
| 3 | 
            +
            size 4993466536
         | 
    	
        model-00007-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:870af56ce1acaa352132d96d8cd910c818e1c786205f2725826ad3e5e7e0f5da
         | 
| 3 | 
            +
            size 4993473216
         | 
    	
        model-00008-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e19aeb008c86f3ca031f425448c3c08da5286e790149bd750b2590b6490005cb
         | 
| 3 | 
            +
            size 4995571368
         | 
    	
        model-00009-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:23b52735c20aad2fdb3b0866dec7910ab2abfb365e58021a5d0f240421e54c94
         | 
| 3 | 
            +
            size 4995586784
         | 
    	
        model-00010-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1b32432d508676f0015ba0c7449869a559f08e694d01e3371bb35b732c4cd409
         | 
| 3 | 
            +
            size 4997717864
         | 
    	
        model-00011-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3a774fedc9a6bf86cc4dc1a3389d67fcb723be335ac2397048ddc2c30ea71833
         | 
| 3 | 
            +
            size 4999725680
         | 
    	
        model-00012-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:809d6188a4f18e527b5030ecdd410cdad5468529fafe246f8d98206155a7b984
         | 
| 3 | 
            +
            size 4999684824
         | 
    	
        model-00013-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c95b5c9260346b29a3f239a308f6a919d141da9730f04a4c88835068d5cb4cdd
         | 
| 3 | 
            +
            size 4999685416
         | 
    	
        model-00014-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:290eea128b4b50a7a3649f6627b7eaf607fff8709247431fcfb2edb533d83189
         | 
| 3 | 
            +
            size 4999685056
         | 
    	
        model-00015-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c82137ad49baf58dcdb052de85023706f4d063839bcfee92d53b93732e564201
         | 
| 3 | 
            +
            size 4999685104
         | 
    	
        model-00016-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ba801d0f9f98d750c65c0b54da3452c68d7625169796d6ef5dc1d4401e47577e
         | 
| 3 | 
            +
            size 4995471368
         | 
    	
        model-00017-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b45b61ac9f24f0031afce46f7d71066de19131e049a893fcb56055e4722aa46b
         | 
| 3 | 
            +
            size 4995489520
         | 
    	
        model-00018-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:dd78deb2feaf63730dee7fff6ab29353737bd811fa09c36ed4ee2c529103af35
         | 
| 3 | 
            +
            size 4995490040
         | 
    	
        model-00019-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9d8c7a6f3097ee803d243fb732628c910bb248ae0ebad149daf57e42d7c7bf56
         | 
| 3 | 
            +
            size 4995490048
         | 
    	
        model-00020-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:46e92912762b9ce2fc56b89b35ff62338a374331a33013cd6ff39ebaf3c6bd9f
         | 
| 3 | 
            +
            size 4995490064
         | 
    	
        model-00021-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:909ef15a6968063a3934c17c6198e52231e45363d320990cc22a5166ea44040c
         | 
| 3 | 
            +
            size 4995489784
         | 
    	
        model-00022-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c0ab401babeaa57a055311db9d51d2e3a90c096661e1cb1a7b972a9088e78793
         | 
| 3 | 
            +
            size 4999684496
         | 
    	
        model-00023-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9726a8222732dfc2feb660e971f95444a461b27689767517f2154aac38deac83
         | 
| 3 | 
            +
            size 4999685328
         | 
    	
        model-00024-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:485656bd4f5707be353112b1ad35a72248aacb78aa62841eaaeee43bf278baa4
         | 
| 3 | 
            +
            size 4999685304
         | 
    	
        model-00025-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d9d203d37002e40e79b00e6da3c4bdb46aaf1b9dab28bfabf1541a09746bb93e
         | 
| 3 | 
            +
            size 4999685072
         | 
    	
        model-00026-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:818cdd523b14557924f51156ea734cc29e42b88301fcf889b107c39c0e393fd2
         | 
| 3 | 
            +
            size 4999684920
         | 
    	
        model-00027-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d7e6e2e34db14b93e586c95f60ecd74ece24df100867f1775f3a49904b667521
         | 
| 3 | 
            +
            size 4999684648
         | 
    	
        model-00028-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:13c2e60838c92b6d29c7e01f71abc70a90999c7e9c0b2452287e6878000c1078
         | 
| 3 | 
            +
            size 4999685096
         | 
    	
        model-00029-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:9076d46655ace4528e99990aca83e32d790af41562f0bfccdd9dfc67b8ebc3fe
         | 
| 3 | 
            +
            size 4999685040
         | 
    	
        model-00030-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3c07c81bb0845211ccb2d9f508d56ac14243c2852cf7ff3cdd9d1aa7449e38ee
         | 
| 3 | 
            +
            size 4999685096
         | 
    	
        model-00031-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:05fd4fc0138ce1029867441008058a8abfbaeea1fd115cf7f3d522c8f29a14fc
         | 
| 3 | 
            +
            size 4999685064
         | 
    	
        model-00032-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5a4f4ff358c545a8167fa54449716e433988a66b7bc535511e9a86a340e87e9d
         | 
| 3 | 
            +
            size 4999684432
         | 
    	
        model-00033-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4209ab0fe830fcc3fe331f2d7e557078032bf61bef647ef976f8c0f701f47a75
         | 
| 3 | 
            +
            size 4999684672
         | 
    	
        model-00034-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fecaa2801cb2f5c30ce86270f6ad8997fd27464857827e057166fa6c860fc272
         | 
| 3 | 
            +
            size 4999685096
         | 
    	
        model-00035-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:541f6907216cdf8bf51ff6a5a5e33813647c1d8e4c59943f930dd0747a7e99b6
         | 
| 3 | 
            +
            size 4999685344
         | 
    	
        model-00036-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e48a7c7eaa34f3421240ba8dc58c7f9cc6cecd5753ecbd4f34e0a22af3584f23
         | 
| 3 | 
            +
            size 4999685264
         | 
    	
        model-00037-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e2168633d36f4a9beff90356852bb37e5e2ac7c0c2735e9ca969f247a73a7b41
         | 
| 3 | 
            +
            size 4999684592
         | 
    	
        model-00038-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f110b326fe5556b4b34bf0305c627d76f22379ef7aa7ea6510a799e7bc947174
         | 
| 3 | 
            +
            size 4999684840
         | 
    	
        model-00039-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ad7e6a3d6b8a2f74e85507a28ae95a34ced16c5f44513d001eb03e1db1521420
         | 
| 3 | 
            +
            size 4999685248
         | 
    	
        model-00040-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:0566bb42ea7b8d61ce7c72cb53f4242f20869e56dd69c94cb7252b4218468317
         | 
| 3 | 
            +
            size 4999685104
         | 
    	
        model-00041-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:a6642d026b551d83b50f2b2feacdfeb228530b9203d217b723c791a6c5a3b0a0
         | 
| 3 | 
            +
            size 4999685008
         | 
    	
        model-00042-of-00042.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:02ca31d066168d125f472f21b1c135989f2baac296ebea721d9adf7c7c04a410
         | 
| 3 | 
            +
            size 1484847944
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        modeling_llada2_moe.py
    ADDED
    
    | @@ -0,0 +1,1621 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """PyTorch LLaDA2MoE model."""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import math
         | 
| 23 | 
            +
            import warnings
         | 
| 24 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import torch
         | 
| 27 | 
            +
            import torch.nn.functional as F
         | 
| 28 | 
            +
            import torch.utils.checkpoint
         | 
| 29 | 
            +
            from torch import nn
         | 
| 30 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            from transformers.activations import ACT2FN
         | 
| 33 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 34 | 
            +
            from transformers.modeling_attn_mask_utils import (
         | 
| 35 | 
            +
                AttentionMaskConverter,
         | 
| 36 | 
            +
                _prepare_4d_attention_mask,
         | 
| 37 | 
            +
                _prepare_4d_causal_attention_mask,
         | 
| 38 | 
            +
                _prepare_4d_causal_attention_mask_for_sdpa,
         | 
| 39 | 
            +
            )
         | 
| 40 | 
            +
            from transformers.modeling_outputs import (
         | 
| 41 | 
            +
                MoeModelOutputWithPast,
         | 
| 42 | 
            +
                MoeCausalLMOutputWithPast,
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
         | 
| 45 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 46 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
         | 
| 47 | 
            +
            from transformers.utils import (
         | 
| 48 | 
            +
                add_start_docstrings,
         | 
| 49 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 50 | 
            +
                is_flash_attn_2_available,
         | 
| 51 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 52 | 
            +
                logging,
         | 
| 53 | 
            +
                replace_return_docstrings,
         | 
| 54 | 
            +
            )
         | 
| 55 | 
            +
            from transformers.utils.import_utils import is_torch_fx_available
         | 
| 56 | 
            +
            from .configuration_llada2_moe import LLaDA2MoeConfig
         | 
| 57 | 
            +
            from transformers.generation.utils import GenerationMixin
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            if is_flash_attn_2_available():
         | 
| 61 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 62 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
         | 
| 66 | 
            +
            # It means that the function will not be traced through and simply appear as a node in the graph.
         | 
| 67 | 
            +
            if is_torch_fx_available():
         | 
| 68 | 
            +
                if not is_torch_greater_or_equal_than_1_13:
         | 
| 69 | 
            +
                    import torch.fx
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            _CONFIG_FOR_DOC = "LLaDA2MoeConfig"
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 80 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 81 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 82 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 83 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
         | 
| 84 | 
            +
                return (
         | 
| 85 | 
            +
                    indices,
         | 
| 86 | 
            +
                    cu_seqlens,
         | 
| 87 | 
            +
                    max_seqlen_in_batch,
         | 
| 88 | 
            +
                )
         | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            class LLaDA2MoeRMSNorm(nn.Module):
         | 
| 92 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 93 | 
            +
                    """
         | 
| 94 | 
            +
                    LLaDA2MoeRMSNorm is equivalent to T5LayerNorm
         | 
| 95 | 
            +
                    """
         | 
| 96 | 
            +
                    super().__init__()
         | 
| 97 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 98 | 
            +
                    self.variance_epsilon = eps
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def forward(self, hidden_states):
         | 
| 101 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 102 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 103 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 104 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 105 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            ALL_LAYERNORM_LAYERS.append(LLaDA2MoeRMSNorm)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            class LLaDA2MoeRotaryEmbedding(nn.Module):
         | 
| 112 | 
            +
                def __init__(self, config: LLaDA2MoeConfig, device=None):
         | 
| 113 | 
            +
                    super().__init__()
         | 
| 114 | 
            +
                    # BC: "rope_type" was originally "type"
         | 
| 115 | 
            +
                    if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
         | 
| 116 | 
            +
                        self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 117 | 
            +
                    else:
         | 
| 118 | 
            +
                        self.rope_type = "default"
         | 
| 119 | 
            +
                    self.max_seq_len_cached = config.max_position_embeddings
         | 
| 120 | 
            +
                    self.original_max_seq_len = config.max_position_embeddings
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    self.config = config
         | 
| 123 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
         | 
| 126 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 127 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                @torch.no_grad()
         | 
| 130 | 
            +
                @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
         | 
| 131 | 
            +
                def forward(self, x, position_ids):
         | 
| 132 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
         | 
| 133 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
         | 
| 136 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):  # Force float32
         | 
| 137 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 138 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 139 | 
            +
                        cos = emb.cos() * self.attention_scaling
         | 
| 140 | 
            +
                        sin = emb.sin() * self.attention_scaling
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            # Copied from transformers.models.llama.modeling_llama.rotate_half
         | 
| 146 | 
            +
            def rotate_half(x):
         | 
| 147 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 148 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 149 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 150 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
         | 
| 154 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         | 
| 155 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                Args:
         | 
| 158 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 159 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 160 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 161 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 162 | 
            +
                    position_ids (`torch.Tensor`):
         | 
| 163 | 
            +
                        The position indices of the tokens corresponding to the query and key tensors. For example, this can be
         | 
| 164 | 
            +
                        used to pass offsetted position ids when working with a KV-cache.
         | 
| 165 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 166 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 167 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 168 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 169 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 170 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 171 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 172 | 
            +
                Returns:
         | 
| 173 | 
            +
                    `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 174 | 
            +
                """
         | 
| 175 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 176 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                # Keep half or full tensor for later concatenation
         | 
| 179 | 
            +
                rotary_dim = cos.shape[-1]
         | 
| 180 | 
            +
                q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
         | 
| 181 | 
            +
                k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                # Apply rotary embeddings on the first half or full tensor
         | 
| 184 | 
            +
                q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
         | 
| 185 | 
            +
                k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                # Concatenate back to full shape
         | 
| 188 | 
            +
                q_embed = torch.cat([q_embed, q_pass], dim=-1)
         | 
| 189 | 
            +
                k_embed = torch.cat([k_embed, k_pass], dim=-1)
         | 
| 190 | 
            +
                return q_embed, k_embed
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            class LLaDA2MoeMLP(nn.Module):
         | 
| 194 | 
            +
                def __init__(self, config: LLaDA2MoeConfig, intermediate_size: int):
         | 
| 195 | 
            +
                    super().__init__()
         | 
| 196 | 
            +
                    self.config = config
         | 
| 197 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 198 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 201 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 202 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 203 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                def forward(self, x):
         | 
| 206 | 
            +
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 207 | 
            +
             | 
| 208 | 
            +
             | 
| 209 | 
            +
            class LLaDA2MoeGate(nn.Module):
         | 
| 210 | 
            +
                def __init__(self, config):
         | 
| 211 | 
            +
                    super().__init__()
         | 
| 212 | 
            +
                    self.config = config
         | 
| 213 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 214 | 
            +
                    self.num_experts = config.num_experts
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    self.n_group = config.n_group
         | 
| 217 | 
            +
                    self.topk_group = config.topk_group
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # topk selection algorithm
         | 
| 220 | 
            +
                    self.gating_dim = config.hidden_size
         | 
| 221 | 
            +
                    self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
         | 
| 222 | 
            +
                    self.routed_scaling_factor = config.routed_scaling_factor
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    self.register_buffer("expert_bias", torch.zeros((self.num_experts)))
         | 
| 225 | 
            +
                    self.reset_parameters()
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                def reset_parameters(self) -> None:
         | 
| 228 | 
            +
                    import torch.nn.init as init
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    init.kaiming_uniform_(self.weight, a=math.sqrt(5))
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                def group_limited_topk(
         | 
| 233 | 
            +
                    self,
         | 
| 234 | 
            +
                    scores: torch.Tensor,
         | 
| 235 | 
            +
                ):
         | 
| 236 | 
            +
                    num_tokens, _ = scores.size()
         | 
| 237 | 
            +
                    # Organize the experts into groups
         | 
| 238 | 
            +
                    group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
         | 
| 239 | 
            +
                    group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
         | 
| 240 | 
            +
                    group_mask = torch.zeros_like(group_scores)
         | 
| 241 | 
            +
                    group_mask.scatter_(1, group_idx, 1)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    # Mask the experts based on selection groups
         | 
| 244 | 
            +
                    score_mask = (
         | 
| 245 | 
            +
                        group_mask.unsqueeze(-1)
         | 
| 246 | 
            +
                        .expand(num_tokens, self.n_group, self.num_experts // self.n_group)
         | 
| 247 | 
            +
                        .reshape(num_tokens, -1)
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf'))
         | 
| 251 | 
            +
                    probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    return probs, top_indices
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                def forward(self, hidden_states):
         | 
| 256 | 
            +
                    # compute gating score
         | 
| 257 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
         | 
| 258 | 
            +
                    logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32))
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    scores = torch.sigmoid(logits.float()).type_as(logits)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    scores_for_routing = scores + self.expert_bias
         | 
| 263 | 
            +
                    _, topk_idx = self.group_limited_topk(scores_for_routing)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores
         | 
| 268 | 
            +
                    topk_weight = topk_weight * self.routed_scaling_factor
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    return topk_idx, topk_weight, logits
         | 
| 271 | 
            +
             | 
| 272 | 
            +
             | 
| 273 | 
            +
            class LLaDA2MoeSparseMoeBlock(nn.Module):
         | 
| 274 | 
            +
                """
         | 
| 275 | 
            +
                A mixed expert module containing shared experts.
         | 
| 276 | 
            +
                """
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                def __init__(self, config: LLaDA2MoeConfig):
         | 
| 279 | 
            +
                    super().__init__()
         | 
| 280 | 
            +
                    self.config = config
         | 
| 281 | 
            +
                    self.num_experts_per_tok = config.num_experts_per_tok
         | 
| 282 | 
            +
                    self._setup_experts()
         | 
| 283 | 
            +
                    self.gate = LLaDA2MoeGate(config)
         | 
| 284 | 
            +
                    if config.num_shared_experts is not None:
         | 
| 285 | 
            +
                        self.shared_experts = LLaDA2MoeMLP(
         | 
| 286 | 
            +
                            config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts
         | 
| 287 | 
            +
                        )
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def _setup_experts(self):
         | 
| 290 | 
            +
                    self.experts = nn.ModuleList(
         | 
| 291 | 
            +
                        [
         | 
| 292 | 
            +
                            LLaDA2MoeMLP(config=self.config, intermediate_size=self.config.moe_intermediate_size)
         | 
| 293 | 
            +
                            for _ in range(self.config.num_experts)
         | 
| 294 | 
            +
                        ]
         | 
| 295 | 
            +
                    )
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def forward(self, hidden_states):
         | 
| 298 | 
            +
                    identity = hidden_states
         | 
| 299 | 
            +
                    bsz, seq_len, h = hidden_states.shape
         | 
| 300 | 
            +
                    topk_idx, topk_weight, router_logits = self.gate(hidden_states)
         | 
| 301 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
         | 
| 302 | 
            +
                    flat_topk_idx = topk_idx.view(-1)
         | 
| 303 | 
            +
                    if self.training:
         | 
| 304 | 
            +
                        hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
         | 
| 305 | 
            +
                        y = torch.empty_like(hidden_states)
         | 
| 306 | 
            +
                        for i, expert in enumerate(self.experts):
         | 
| 307 | 
            +
                            y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
         | 
| 308 | 
            +
                        y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
         | 
| 309 | 
            +
                        y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
         | 
| 310 | 
            +
                    else:
         | 
| 311 | 
            +
                        y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h)
         | 
| 312 | 
            +
                    if self.config.num_shared_experts is not None:
         | 
| 313 | 
            +
                        y = y + self.shared_experts(identity)
         | 
| 314 | 
            +
                    return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1))
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                @torch.no_grad()
         | 
| 317 | 
            +
                def moe_infer(self, x, topk_ids, topk_weight):
         | 
| 318 | 
            +
                    cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
         | 
| 319 | 
            +
                    cnts.scatter_(1, topk_ids, 1)
         | 
| 320 | 
            +
                    tokens_per_expert = cnts.sum(dim=0)
         | 
| 321 | 
            +
                    idxs = topk_ids.view(-1).argsort()
         | 
| 322 | 
            +
                    sorted_tokens = x[idxs // topk_ids.shape[1]]
         | 
| 323 | 
            +
                    sorted_tokens_shape = sorted_tokens.shape
         | 
| 324 | 
            +
                    tokens_per_expert = tokens_per_expert.cpu().numpy()
         | 
| 325 | 
            +
                    outputs = []
         | 
| 326 | 
            +
                    start_idx = 0
         | 
| 327 | 
            +
                    for i, num_tokens in enumerate(tokens_per_expert):
         | 
| 328 | 
            +
                        end_idx = start_idx + num_tokens
         | 
| 329 | 
            +
                        if num_tokens == 0:
         | 
| 330 | 
            +
                            continue
         | 
| 331 | 
            +
                        expert = self.experts[i]
         | 
| 332 | 
            +
                        tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
         | 
| 333 | 
            +
                        expert_out = expert(tokens_for_this_expert)
         | 
| 334 | 
            +
                        outputs.append(expert_out.to(x.device))
         | 
| 335 | 
            +
                        start_idx = end_idx
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
         | 
| 338 | 
            +
                    new_x = torch.empty_like(outs)
         | 
| 339 | 
            +
                    new_x[idxs] = outs
         | 
| 340 | 
            +
                    final_out = (
         | 
| 341 | 
            +
                        new_x.view(*topk_ids.shape, -1)
         | 
| 342 | 
            +
                        .type(topk_weight.dtype)
         | 
| 343 | 
            +
                        .mul_(topk_weight.unsqueeze(dim=-1))
         | 
| 344 | 
            +
                        .sum(dim=1)
         | 
| 345 | 
            +
                        .type(new_x.dtype)
         | 
| 346 | 
            +
                    )
         | 
| 347 | 
            +
                    return final_out
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv
         | 
| 351 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 352 | 
            +
                """
         | 
| 353 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 354 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 355 | 
            +
                """
         | 
| 356 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 357 | 
            +
                if n_rep == 1:
         | 
| 358 | 
            +
                    return hidden_states
         | 
| 359 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 360 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
             | 
| 363 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->LLaDA2Moe
         | 
| 364 | 
            +
            class LLaDA2MoeAttention(nn.Module):
         | 
| 365 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                def __init__(self, config: LLaDA2MoeConfig, layer_idx: Optional[int] = None):
         | 
| 368 | 
            +
                    super().__init__()
         | 
| 369 | 
            +
                    self.config = config
         | 
| 370 | 
            +
                    self.layer_idx = layer_idx
         | 
| 371 | 
            +
                    if layer_idx is None:
         | 
| 372 | 
            +
                        logger.warning_once(
         | 
| 373 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
         | 
| 374 | 
            +
                            "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 375 | 
            +
                            "when creating this class."
         | 
| 376 | 
            +
                        )
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 379 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 380 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 381 | 
            +
                    self.head_dim = config.head_dim or self.hidden_size // self.num_heads
         | 
| 382 | 
            +
                    partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
         | 
| 383 | 
            +
                    self.rope_dim = int(self.head_dim * partial_rotary_factor)
         | 
| 384 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 385 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 386 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 387 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 388 | 
            +
                    self.is_causal = False
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    self.query_key_value = nn.Linear(
         | 
| 391 | 
            +
                        self.hidden_size,
         | 
| 392 | 
            +
                        (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
         | 
| 393 | 
            +
                        bias=config.use_qkv_bias,
         | 
| 394 | 
            +
                    )
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    self.query_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
         | 
| 397 | 
            +
                    self.key_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)
         | 
| 398 | 
            +
                    self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 401 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                def forward(
         | 
| 404 | 
            +
                    self,
         | 
| 405 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 406 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 407 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 408 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 409 | 
            +
                    output_attentions: bool = False,
         | 
| 410 | 
            +
                    use_cache: bool = False,
         | 
| 411 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
         | 
| 412 | 
            +
                    **kwargs,
         | 
| 413 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 414 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 415 | 
            +
                        warnings.warn(
         | 
| 416 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 417 | 
            +
                        )
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    qkv = self.query_key_value(hidden_states)
         | 
| 422 | 
            +
                    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    query_states, key_states, value_states = qkv.split(
         | 
| 425 | 
            +
                        [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
         | 
| 426 | 
            +
                    )
         | 
| 427 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 428 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 429 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    query_states = self.query_layernorm(query_states)
         | 
| 432 | 
            +
                    key_states = self.key_layernorm(key_states)
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 435 | 
            +
                    if past_key_value is not None:
         | 
| 436 | 
            +
                        if self.layer_idx is None:
         | 
| 437 | 
            +
                            raise ValueError(
         | 
| 438 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 439 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 440 | 
            +
                                "with a layer index."
         | 
| 441 | 
            +
                            )
         | 
| 442 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 443 | 
            +
                    cos, sin = position_embeddings
         | 
| 444 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                    if past_key_value is not None:
         | 
| 447 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 448 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 451 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 456 | 
            +
                        raise ValueError(
         | 
| 457 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 458 | 
            +
                            f" {attn_weights.size()}"
         | 
| 459 | 
            +
                        )
         | 
| 460 | 
            +
                    # attention_mask = None
         | 
| 461 | 
            +
                    if attention_mask is not None:
         | 
| 462 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 463 | 
            +
                            raise ValueError(
         | 
| 464 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 465 | 
            +
                            )
         | 
| 466 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                    # upcast attention to fp32
         | 
| 469 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 470 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 471 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 474 | 
            +
                        raise ValueError(
         | 
| 475 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 476 | 
            +
                            f" {attn_output.size()}"
         | 
| 477 | 
            +
                        )
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1)
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    attn_output = self.dense(attn_output)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    if not output_attentions:
         | 
| 486 | 
            +
                        attn_weights = None
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 489 | 
            +
             | 
| 490 | 
            +
             | 
| 491 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->LLaDA2Moe
         | 
| 492 | 
            +
            class LLaDA2MoeFlashAttention2(LLaDA2MoeAttention):
         | 
| 493 | 
            +
                """
         | 
| 494 | 
            +
                LLaDA2Moe flash attention module. This module inherits from `LLaDA2MoeAttention` as the weights of the module stays
         | 
| 495 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 496 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 497 | 
            +
                """
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 500 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 503 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 504 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 505 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                def forward(
         | 
| 508 | 
            +
                    self,
         | 
| 509 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 510 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 511 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 512 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 513 | 
            +
                    output_attentions: bool = False,
         | 
| 514 | 
            +
                    use_cache: bool = False,
         | 
| 515 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
         | 
| 516 | 
            +
                    **kwargs,
         | 
| 517 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 518 | 
            +
                    # LLaDA2MoeFlashAttention2 attention does not support output_attentions
         | 
| 519 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 520 | 
            +
                        warnings.warn(
         | 
| 521 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 522 | 
            +
                        )
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 525 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    output_attentions = False
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 532 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 533 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    qkv = self.query_key_value(hidden_states)
         | 
| 536 | 
            +
                    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                    query_states, key_states, value_states = qkv.split(
         | 
| 539 | 
            +
                        [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
         | 
| 540 | 
            +
                    )
         | 
| 541 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 542 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 543 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    query_states = self.query_layernorm(query_states)
         | 
| 546 | 
            +
                    key_states = self.key_layernorm(key_states)
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 549 | 
            +
                    if past_key_value is not None:
         | 
| 550 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 551 | 
            +
                    cos, sin = position_embeddings
         | 
| 552 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    if past_key_value is not None:
         | 
| 555 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 556 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 559 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 560 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 561 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 562 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 567 | 
            +
                    # therefore the input hidden states gets silently cast in float32. Hence, we need
         | 
| 568 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 569 | 
            +
                    # This might slow down training & inference so it is recommended to not cast the LayerNorms
         | 
| 570 | 
            +
                    # in fp32. (LLaDA2MoeRMSNorm handles it correctly)
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                    input_dtype = query_states.dtype
         | 
| 573 | 
            +
                    if input_dtype == torch.float32:
         | 
| 574 | 
            +
                        # Handle the case where the model is quantized
         | 
| 575 | 
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 576 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 577 | 
            +
                        elif torch.is_autocast_enabled():
         | 
| 578 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 579 | 
            +
                        else:
         | 
| 580 | 
            +
                            target_dtype = self.query_key_value.weight.dtype
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                        logger.warning_once(
         | 
| 583 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 584 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 585 | 
            +
                            f" {target_dtype}."
         | 
| 586 | 
            +
                        )
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 589 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 590 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 593 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         | 
| 594 | 
            +
                    )
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
         | 
| 597 | 
            +
                    attn_output = self.dense(attn_output)
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    if not output_attentions:
         | 
| 600 | 
            +
                        attn_weights = None
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                def _flash_attention_forward(
         | 
| 605 | 
            +
                    self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
         | 
| 606 | 
            +
                ):
         | 
| 607 | 
            +
                    """
         | 
| 608 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 609 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 610 | 
            +
             | 
| 611 | 
            +
                    Args:
         | 
| 612 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 613 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 614 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 615 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 616 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 617 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 618 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 619 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 620 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 621 | 
            +
                        dropout (`int`, *optional*):
         | 
| 622 | 
            +
                            Attention dropout
         | 
| 623 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 624 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 625 | 
            +
                        query_length (`int`):
         | 
| 626 | 
            +
                            The length of the query sequence in terms of tokens. This represents the number of tokens in the
         | 
| 627 | 
            +
                            `query_states` tensor along the sequence dimension. It is used to determine the effective sequence
         | 
| 628 | 
            +
                            length for attention computations.
         | 
| 629 | 
            +
                    """
         | 
| 630 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 631 | 
            +
                        causal = self.is_causal
         | 
| 632 | 
            +
                    else:
         | 
| 633 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LLaDA2MoeFlashAttention2 __init__.
         | 
| 634 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 635 | 
            +
                    
         | 
| 636 | 
            +
                    # attention_mask = None
         | 
| 637 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 638 | 
            +
                    if attention_mask is not None:
         | 
| 639 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 640 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 641 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 642 | 
            +
                        )
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 645 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(
         | 
| 648 | 
            +
                            query_states,
         | 
| 649 | 
            +
                            key_states,
         | 
| 650 | 
            +
                            value_states,
         | 
| 651 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 652 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 653 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 654 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 655 | 
            +
                            dropout_p=dropout,
         | 
| 656 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 657 | 
            +
                            causal=causal,
         | 
| 658 | 
            +
                        )
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 661 | 
            +
                    else:
         | 
| 662 | 
            +
                        attn_output = flash_attn_func(
         | 
| 663 | 
            +
                            query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
         | 
| 664 | 
            +
                        )
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    return attn_output
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 669 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 670 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                    key_layer = index_first_axis(
         | 
| 673 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 674 | 
            +
                    )
         | 
| 675 | 
            +
                    value_layer = index_first_axis(
         | 
| 676 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 677 | 
            +
                    )
         | 
| 678 | 
            +
                    if query_length == kv_seq_len:
         | 
| 679 | 
            +
                        query_layer = index_first_axis(
         | 
| 680 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
         | 
| 681 | 
            +
                        )
         | 
| 682 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 683 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 684 | 
            +
                        indices_q = indices_k
         | 
| 685 | 
            +
                    elif query_length == 1:
         | 
| 686 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 687 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 688 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 689 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 690 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 691 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 692 | 
            +
                    else:
         | 
| 693 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 694 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 695 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    return (
         | 
| 698 | 
            +
                        query_layer,
         | 
| 699 | 
            +
                        key_layer,
         | 
| 700 | 
            +
                        value_layer,
         | 
| 701 | 
            +
                        indices_q,
         | 
| 702 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 703 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 704 | 
            +
                    )
         | 
| 705 | 
            +
             | 
| 706 | 
            +
             | 
| 707 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->LLaDA2Moe
         | 
| 708 | 
            +
            class LLaDA2MoeSdpaAttention(LLaDA2MoeAttention):
         | 
| 709 | 
            +
                """
         | 
| 710 | 
            +
                LLaDA2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 711 | 
            +
                `LLaDA2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 712 | 
            +
                SDPA API.
         | 
| 713 | 
            +
                """
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                # Adapted from LLaDA2MoeAttention.forward
         | 
| 716 | 
            +
                def forward(
         | 
| 717 | 
            +
                    self,
         | 
| 718 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 719 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 720 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 721 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 722 | 
            +
                    output_attentions: bool = False,
         | 
| 723 | 
            +
                    use_cache: bool = False,
         | 
| 724 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
         | 
| 725 | 
            +
                    **kwargs,
         | 
| 726 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 727 | 
            +
                    if output_attentions:
         | 
| 728 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 729 | 
            +
                        logger.warning_once(
         | 
| 730 | 
            +
                            "LLaDA2MoeModel is using LLaDA2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 731 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 732 | 
            +
                        )
         | 
| 733 | 
            +
                        return super().forward(
         | 
| 734 | 
            +
                            hidden_states=hidden_states,
         | 
| 735 | 
            +
                            attention_mask=attention_mask,
         | 
| 736 | 
            +
                            position_ids=position_ids,
         | 
| 737 | 
            +
                            past_key_value=past_key_value,
         | 
| 738 | 
            +
                            output_attentions=output_attentions,
         | 
| 739 | 
            +
                            use_cache=use_cache,
         | 
| 740 | 
            +
                        )
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                    qkv = self.query_key_value(hidden_states)
         | 
| 745 | 
            +
                    qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    query_states, key_states, value_states = qkv.split(
         | 
| 748 | 
            +
                        [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
         | 
| 749 | 
            +
                    )
         | 
| 750 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 751 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 752 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 753 | 
            +
             | 
| 754 | 
            +
                    query_states = self.query_layernorm(query_states)
         | 
| 755 | 
            +
                    key_states = self.key_layernorm(key_states)
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 758 | 
            +
                    if past_key_value is not None:
         | 
| 759 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 760 | 
            +
                    cos, sin = position_embeddings
         | 
| 761 | 
            +
             | 
| 762 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                    if past_key_value is not None:
         | 
| 765 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 766 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 769 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 770 | 
            +
             | 
| 771 | 
            +
                    # attention_mask = None
         | 
| 772 | 
            +
                    if attention_mask is not None:
         | 
| 773 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 774 | 
            +
                            raise ValueError(
         | 
| 775 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 776 | 
            +
                            )
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 779 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 780 | 
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         | 
| 781 | 
            +
                        query_states = query_states.contiguous()
         | 
| 782 | 
            +
                        key_states = key_states.contiguous()
         | 
| 783 | 
            +
                        value_states = value_states.contiguous()
         | 
| 784 | 
            +
             | 
| 785 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 786 | 
            +
                        query_states,
         | 
| 787 | 
            +
                        key_states,
         | 
| 788 | 
            +
                        value_states,
         | 
| 789 | 
            +
                        attn_mask=attention_mask,
         | 
| 790 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 791 | 
            +
                        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         | 
| 792 | 
            +
                        is_causal=self.is_causal and attention_mask is None and q_len > 1,
         | 
| 793 | 
            +
                    )
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 796 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, -1)
         | 
| 797 | 
            +
             | 
| 798 | 
            +
                    attn_output = self.dense(attn_output)
         | 
| 799 | 
            +
             | 
| 800 | 
            +
                    return attn_output, None, past_key_value
         | 
| 801 | 
            +
             | 
| 802 | 
            +
             | 
| 803 | 
            +
            ATTENTION_CLASSES = {
         | 
| 804 | 
            +
                "eager": LLaDA2MoeAttention,
         | 
| 805 | 
            +
                "flash_attention_2": LLaDA2MoeFlashAttention2,
         | 
| 806 | 
            +
                "sdpa": LLaDA2MoeSdpaAttention,
         | 
| 807 | 
            +
            }
         | 
| 808 | 
            +
             | 
| 809 | 
            +
             | 
| 810 | 
            +
            class LLaDA2MoeDecoderLayer(nn.Module):
         | 
| 811 | 
            +
                def __init__(self, config: LLaDA2MoeConfig, layer_idx: int):
         | 
| 812 | 
            +
                    super().__init__()
         | 
| 813 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                    self.mlp = (
         | 
| 818 | 
            +
                        LLaDA2MoeSparseMoeBlock(config)
         | 
| 819 | 
            +
                        if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace)
         | 
| 820 | 
            +
                        else LLaDA2MoeMLP(config=config, intermediate_size=config.intermediate_size)
         | 
| 821 | 
            +
                    )
         | 
| 822 | 
            +
                    self.input_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 823 | 
            +
                    self.post_attention_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                def forward(
         | 
| 826 | 
            +
                    self,
         | 
| 827 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 828 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 829 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 830 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 831 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 832 | 
            +
                    output_router_logits: Optional[bool] = False,
         | 
| 833 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 834 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
         | 
| 835 | 
            +
                    **kwargs,
         | 
| 836 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 837 | 
            +
                    """
         | 
| 838 | 
            +
                    Args:
         | 
| 839 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 840 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 841 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 842 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 843 | 
            +
                        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 844 | 
            +
                            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 845 | 
            +
                            config.n_positions - 1]`.
         | 
| 846 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
         | 
| 847 | 
            +
                            cached past key and value projection states
         | 
| 848 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 849 | 
            +
                            Whether to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 850 | 
            +
                            returned tensors for more detail.
         | 
| 851 | 
            +
                        output_router_logits (`bool`, *optional*):
         | 
| 852 | 
            +
                            Whether or not to return the logits of all the routers. They are useful for computing the router loss,
         | 
| 853 | 
            +
                            and should not be returned during inference.
         | 
| 854 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 855 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 856 | 
            +
                            (see `past_key_values`).
         | 
| 857 | 
            +
                    """
         | 
| 858 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 859 | 
            +
                        warnings.warn(
         | 
| 860 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 861 | 
            +
                        )
         | 
| 862 | 
            +
                    residual = hidden_states
         | 
| 863 | 
            +
             | 
| 864 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                    # Self Attention
         | 
| 867 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attention(
         | 
| 868 | 
            +
                        hidden_states=hidden_states,
         | 
| 869 | 
            +
                        attention_mask=attention_mask,
         | 
| 870 | 
            +
                        position_ids=position_ids,
         | 
| 871 | 
            +
                        past_key_value=past_key_value,
         | 
| 872 | 
            +
                        output_attentions=output_attentions,
         | 
| 873 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 874 | 
            +
                        use_cache=use_cache,
         | 
| 875 | 
            +
                    )
         | 
| 876 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 877 | 
            +
             | 
| 878 | 
            +
                    # Fully Connected
         | 
| 879 | 
            +
                    residual = hidden_states
         | 
| 880 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 881 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 882 | 
            +
                    if isinstance(hidden_states, tuple):
         | 
| 883 | 
            +
                        hidden_states, router_logits = hidden_states
         | 
| 884 | 
            +
                    else:
         | 
| 885 | 
            +
                        router_logits = None
         | 
| 886 | 
            +
                    hidden_states = residual + hidden_states.to(residual.device)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    outputs = (hidden_states,)
         | 
| 889 | 
            +
             | 
| 890 | 
            +
                    if output_attentions:
         | 
| 891 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                    if use_cache:
         | 
| 894 | 
            +
                        outputs += (present_key_value,)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    if output_router_logits:
         | 
| 897 | 
            +
                        outputs += (router_logits,)
         | 
| 898 | 
            +
             | 
| 899 | 
            +
                    return outputs
         | 
| 900 | 
            +
             | 
| 901 | 
            +
             | 
| 902 | 
            +
            LLADA2MOE_START_DOCSTRING = r"""
         | 
| 903 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 904 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 905 | 
            +
                etc.)
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 908 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 909 | 
            +
                and behavior.
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                Parameters:
         | 
| 912 | 
            +
                    config ([`LLaDA2MoeConfig`]):
         | 
| 913 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 914 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 915 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 916 | 
            +
            """
         | 
| 917 | 
            +
             | 
| 918 | 
            +
             | 
| 919 | 
            +
            @add_start_docstrings(
         | 
| 920 | 
            +
                "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
         | 
| 921 | 
            +
                LLADA2MOE_START_DOCSTRING,
         | 
| 922 | 
            +
            )
         | 
| 923 | 
            +
            class LLaDA2MoePreTrainedModel(PreTrainedModel):
         | 
| 924 | 
            +
                config_class = LLaDA2MoeConfig
         | 
| 925 | 
            +
                base_model_prefix = "model"
         | 
| 926 | 
            +
                supports_gradient_checkpointing = True
         | 
| 927 | 
            +
                _no_split_modules = ["LLaDA2MoeDecoderLayer"]
         | 
| 928 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 929 | 
            +
                _supports_flash_attn_2 = True
         | 
| 930 | 
            +
                _supports_sdpa = True
         | 
| 931 | 
            +
                _supports_cache_class = True
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                def _init_weights(self, module):
         | 
| 934 | 
            +
                    std = self.config.initializer_range
         | 
| 935 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 936 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 937 | 
            +
                        if module.bias is not None:
         | 
| 938 | 
            +
                            module.bias.data.zero_()
         | 
| 939 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 940 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 941 | 
            +
                        if module.padding_idx is not None:
         | 
| 942 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 943 | 
            +
             | 
| 944 | 
            +
             | 
| 945 | 
            +
            LLADA2MOE_INPUTS_DOCSTRING = r"""
         | 
| 946 | 
            +
                Args:
         | 
| 947 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 948 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 949 | 
            +
                        it.
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 952 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 953 | 
            +
             | 
| 954 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 955 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 956 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 959 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 964 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 967 | 
            +
                        `past_key_values`).
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 970 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 971 | 
            +
                        information on the default strategy.
         | 
| 972 | 
            +
             | 
| 973 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 974 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 975 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 976 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 977 | 
            +
                        config.n_positions - 1]`.
         | 
| 978 | 
            +
             | 
| 979 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 980 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 981 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 982 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 983 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 984 | 
            +
             | 
| 985 | 
            +
                        Two formats are allowed:
         | 
| 986 | 
            +
                        - a [`~cache_utils.Cache`] instance;
         | 
| 987 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 988 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 989 | 
            +
                        cache format.
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 992 | 
            +
                        legacy cache format will be returned.
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 995 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 996 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 997 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 998 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 999 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1000 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1001 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1002 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1003 | 
            +
                        `past_key_values`).
         | 
| 1004 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1005 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1006 | 
            +
                        tensors for more detail.
         | 
| 1007 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1008 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1009 | 
            +
                        more detail.
         | 
| 1010 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1011 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1012 | 
            +
            """
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
             | 
| 1015 | 
            +
            @add_start_docstrings(
         | 
| 1016 | 
            +
                "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
         | 
| 1017 | 
            +
                LLADA2MOE_START_DOCSTRING,
         | 
| 1018 | 
            +
            )
         | 
| 1019 | 
            +
            class LLaDA2MoeModel(LLaDA2MoePreTrainedModel):
         | 
| 1020 | 
            +
                """
         | 
| 1021 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDA2MoeDecoderLayer`]
         | 
| 1022 | 
            +
             | 
| 1023 | 
            +
                Args:
         | 
| 1024 | 
            +
                    config: LLaDA2MoeConfig
         | 
| 1025 | 
            +
                """
         | 
| 1026 | 
            +
             | 
| 1027 | 
            +
                def __init__(self, config: LLaDA2MoeConfig):
         | 
| 1028 | 
            +
                    super().__init__(config)
         | 
| 1029 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1030 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 1033 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1034 | 
            +
                        [LLaDA2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 1035 | 
            +
                    )
         | 
| 1036 | 
            +
                    self._use_sdpa = config._attn_implementation == "sdpa"
         | 
| 1037 | 
            +
                    self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
         | 
| 1038 | 
            +
                    self.norm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1039 | 
            +
                    self.rotary_emb = LLaDA2MoeRotaryEmbedding(config=config)
         | 
| 1040 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1041 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1042 | 
            +
                    self.post_init()
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                def get_input_embeddings(self):
         | 
| 1045 | 
            +
                    return self.word_embeddings
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1048 | 
            +
                    self.word_embeddings = value
         | 
| 1049 | 
            +
             | 
| 1050 | 
            +
                @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
         | 
| 1051 | 
            +
                def forward(
         | 
| 1052 | 
            +
                    self,
         | 
| 1053 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1054 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1055 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1056 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1057 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1058 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1059 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1060 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1061 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 1062 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1063 | 
            +
                    **kwargs,
         | 
| 1064 | 
            +
                ) -> Union[Tuple, MoeModelOutputWithPast]:
         | 
| 1065 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1066 | 
            +
                    output_hidden_states = (
         | 
| 1067 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1068 | 
            +
                    )
         | 
| 1069 | 
            +
                    output_router_logits = (
         | 
| 1070 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 1071 | 
            +
                    )
         | 
| 1072 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1073 | 
            +
             | 
| 1074 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1075 | 
            +
             | 
| 1076 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 1077 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 1078 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 1079 | 
            +
                    elif input_ids is not None:
         | 
| 1080 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 1081 | 
            +
                    elif inputs_embeds is not None:
         | 
| 1082 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 1083 | 
            +
                    else:
         | 
| 1084 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1087 | 
            +
                        if use_cache:
         | 
| 1088 | 
            +
                            logger.warning_once(
         | 
| 1089 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
         | 
| 1090 | 
            +
                            )
         | 
| 1091 | 
            +
                            use_cache = False
         | 
| 1092 | 
            +
             | 
| 1093 | 
            +
                    past_key_values_length = 0
         | 
| 1094 | 
            +
                    if use_cache:
         | 
| 1095 | 
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 1096 | 
            +
                        if use_legacy_cache:
         | 
| 1097 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1098 | 
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 1099 | 
            +
             | 
| 1100 | 
            +
                    if position_ids is None:
         | 
| 1101 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 1102 | 
            +
                        position_ids = torch.arange(
         | 
| 1103 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 1104 | 
            +
                        )
         | 
| 1105 | 
            +
                        position_ids = position_ids.unsqueeze(0)
         | 
| 1106 | 
            +
             | 
| 1107 | 
            +
                    if inputs_embeds is None:
         | 
| 1108 | 
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         | 
| 1109 | 
            +
             | 
| 1110 | 
            +
                    # TODO flash attention 2 can not support custom attention mask
         | 
| 1111 | 
            +
                    # if self._use_flash_attention_2:
         | 
| 1112 | 
            +
                    #     # 2d mask is passed through the layers
         | 
| 1113 | 
            +
                    #     attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         | 
| 1114 | 
            +
                    if self._use_sdpa and not output_attentions:
         | 
| 1115 | 
            +
                        # output_attentions=True can not be supported when using SDPA, and we fall back on
         | 
| 1116 | 
            +
                        # the manual implementation that requires a 4D causal mask in all cases.
         | 
| 1117 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
         | 
| 1118 | 
            +
                            attention_mask,
         | 
| 1119 | 
            +
                            (batch_size, seq_length),
         | 
| 1120 | 
            +
                            inputs_embeds,
         | 
| 1121 | 
            +
                            past_key_values_length,
         | 
| 1122 | 
            +
                        )
         | 
| 1123 | 
            +
                    else:
         | 
| 1124 | 
            +
                        # 4d mask is passed through the layers
         | 
| 1125 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 1126 | 
            +
                            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 1127 | 
            +
                        )
         | 
| 1128 | 
            +
             | 
| 1129 | 
            +
                    # embed positions
         | 
| 1130 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                    # create position embeddings to be shared across the decoder layers
         | 
| 1133 | 
            +
                    position_embeddings = self.rotary_emb(hidden_states, position_ids)
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                    # decoder layers
         | 
| 1136 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1137 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1138 | 
            +
                    all_router_logits = () if output_router_logits else None
         | 
| 1139 | 
            +
                    next_decoder_cache = None
         | 
| 1140 | 
            +
             | 
| 1141 | 
            +
                    for decoder_layer in self.layers:
         | 
| 1142 | 
            +
                        if output_hidden_states:
         | 
| 1143 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1144 | 
            +
             | 
| 1145 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1146 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1147 | 
            +
                                decoder_layer.__call__,
         | 
| 1148 | 
            +
                                hidden_states,
         | 
| 1149 | 
            +
                                attention_mask,
         | 
| 1150 | 
            +
                                position_ids,
         | 
| 1151 | 
            +
                                past_key_values,
         | 
| 1152 | 
            +
                                output_attentions,
         | 
| 1153 | 
            +
                                output_router_logits,
         | 
| 1154 | 
            +
                                use_cache,
         | 
| 1155 | 
            +
                                position_embeddings,
         | 
| 1156 | 
            +
                            )
         | 
| 1157 | 
            +
                        else:
         | 
| 1158 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1159 | 
            +
                                hidden_states,
         | 
| 1160 | 
            +
                                attention_mask=attention_mask,
         | 
| 1161 | 
            +
                                position_ids=position_ids,
         | 
| 1162 | 
            +
                                past_key_value=past_key_values,
         | 
| 1163 | 
            +
                                output_attentions=output_attentions,
         | 
| 1164 | 
            +
                                output_router_logits=output_router_logits,
         | 
| 1165 | 
            +
                                use_cache=use_cache,
         | 
| 1166 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 1167 | 
            +
                            )
         | 
| 1168 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1169 | 
            +
             | 
| 1170 | 
            +
                        if use_cache:
         | 
| 1171 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
                        if output_attentions:
         | 
| 1174 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                        if output_router_logits and layer_outputs[-1] is not None:
         | 
| 1177 | 
            +
                            all_router_logits += (layer_outputs[-1],)
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1182 | 
            +
                    if output_hidden_states:
         | 
| 1183 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1184 | 
            +
             | 
| 1185 | 
            +
                    next_cache = None
         | 
| 1186 | 
            +
                    if use_cache:
         | 
| 1187 | 
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
         | 
| 1188 | 
            +
                    if not return_dict:
         | 
| 1189 | 
            +
                        return tuple(
         | 
| 1190 | 
            +
                            v
         | 
| 1191 | 
            +
                            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
         | 
| 1192 | 
            +
                            if v is not None
         | 
| 1193 | 
            +
                        )
         | 
| 1194 | 
            +
                    return MoeModelOutputWithPast(
         | 
| 1195 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1196 | 
            +
                        past_key_values=next_cache,
         | 
| 1197 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1198 | 
            +
                        attentions=all_self_attns,
         | 
| 1199 | 
            +
                        router_logits=all_router_logits,
         | 
| 1200 | 
            +
                    )
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
             | 
| 1203 | 
            +
            class LLaDA2MoeModelLM(LLaDA2MoePreTrainedModel, GenerationMixin):
         | 
| 1204 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                def __init__(self, config: LLaDA2MoeConfig):
         | 
| 1207 | 
            +
                    super().__init__(config)
         | 
| 1208 | 
            +
                    self.model = LLaDA2MoeModel(config)
         | 
| 1209 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1210 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1211 | 
            +
             | 
| 1212 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1213 | 
            +
                    self.post_init()
         | 
| 1214 | 
            +
             | 
| 1215 | 
            +
                def get_input_embeddings(self):
         | 
| 1216 | 
            +
                    return self.model.word_embeddings
         | 
| 1217 | 
            +
             | 
| 1218 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1219 | 
            +
                    self.model.word_embeddings = value
         | 
| 1220 | 
            +
             | 
| 1221 | 
            +
                def get_output_embeddings(self):
         | 
| 1222 | 
            +
                    return self.lm_head
         | 
| 1223 | 
            +
             | 
| 1224 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1225 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1226 | 
            +
             | 
| 1227 | 
            +
                def set_decoder(self, decoder):
         | 
| 1228 | 
            +
                    self.model = decoder
         | 
| 1229 | 
            +
             | 
| 1230 | 
            +
                def get_decoder(self):
         | 
| 1231 | 
            +
                    return self.model
         | 
| 1232 | 
            +
             | 
| 1233 | 
            +
                @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
         | 
| 1234 | 
            +
                @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1235 | 
            +
                def forward(
         | 
| 1236 | 
            +
                    self,
         | 
| 1237 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1238 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1239 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1240 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1241 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1242 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1243 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1244 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1245 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1246 | 
            +
                    output_router_logits: Optional[bool] = None,
         | 
| 1247 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1248 | 
            +
                    **kwargs,
         | 
| 1249 | 
            +
                ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
         | 
| 1250 | 
            +
                    r"""
         | 
| 1251 | 
            +
                    Args:
         | 
| 1252 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1253 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1254 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1255 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1256 | 
            +
             | 
| 1257 | 
            +
                    Returns:
         | 
| 1258 | 
            +
             | 
| 1259 | 
            +
                    Example:
         | 
| 1260 | 
            +
             | 
| 1261 | 
            +
                    ```python
         | 
| 1262 | 
            +
                    >>> from transformers import AutoTokenizer
         | 
| 1263 | 
            +
             | 
| 1264 | 
            +
                    >>> model = LLaDA2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 1265 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 1266 | 
            +
             | 
| 1267 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1268 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1269 | 
            +
             | 
| 1270 | 
            +
                    >>> # Generate
         | 
| 1271 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1272 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1273 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1274 | 
            +
                    ```"""
         | 
| 1275 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1276 | 
            +
                    output_hidden_states = (
         | 
| 1277 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1278 | 
            +
                    )
         | 
| 1279 | 
            +
                    output_router_logits = (
         | 
| 1280 | 
            +
                        output_router_logits if output_router_logits is not None else self.config.output_router_logits
         | 
| 1281 | 
            +
                    )
         | 
| 1282 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1283 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1284 | 
            +
                    outputs = self.model(
         | 
| 1285 | 
            +
                        input_ids=input_ids,
         | 
| 1286 | 
            +
                        attention_mask=attention_mask,
         | 
| 1287 | 
            +
                        position_ids=position_ids,
         | 
| 1288 | 
            +
                        past_key_values=past_key_values,
         | 
| 1289 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1290 | 
            +
                        use_cache=use_cache,
         | 
| 1291 | 
            +
                        output_attentions=output_attentions,
         | 
| 1292 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1293 | 
            +
                        output_router_logits=output_router_logits,
         | 
| 1294 | 
            +
                        return_dict=return_dict,
         | 
| 1295 | 
            +
                        **kwargs,
         | 
| 1296 | 
            +
                    )
         | 
| 1297 | 
            +
             | 
| 1298 | 
            +
                    hidden_states = outputs[0]
         | 
| 1299 | 
            +
             | 
| 1300 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1301 | 
            +
                    logits = logits.float()
         | 
| 1302 | 
            +
             | 
| 1303 | 
            +
                    loss = None
         | 
| 1304 | 
            +
                    aux_loss = None
         | 
| 1305 | 
            +
             | 
| 1306 | 
            +
                    if labels is not None:
         | 
| 1307 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1308 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1309 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1310 | 
            +
                        # Flatten the tokens
         | 
| 1311 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1312 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1313 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1314 | 
            +
                        # Enable model parallelism
         | 
| 1315 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1316 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1317 | 
            +
             | 
| 1318 | 
            +
                    if not return_dict:
         | 
| 1319 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1320 | 
            +
                        if output_router_logits:
         | 
| 1321 | 
            +
                            output = (aux_loss,) + output
         | 
| 1322 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1323 | 
            +
             | 
| 1324 | 
            +
                    return MoeCausalLMOutputWithPast(
         | 
| 1325 | 
            +
                        loss=loss,
         | 
| 1326 | 
            +
                        aux_loss=aux_loss,
         | 
| 1327 | 
            +
                        logits=logits,
         | 
| 1328 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1329 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1330 | 
            +
                        attentions=outputs.attentions,
         | 
| 1331 | 
            +
                        router_logits=outputs.router_logits,
         | 
| 1332 | 
            +
                    )
         | 
| 1333 | 
            +
             | 
| 1334 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1335 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs
         | 
| 1336 | 
            +
                ):
         | 
| 1337 | 
            +
                    if past_key_values is not None:
         | 
| 1338 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1339 | 
            +
                            cache_length = past_key_values.get_seq_length()
         | 
| 1340 | 
            +
                            past_length = past_key_values.seen_tokens
         | 
| 1341 | 
            +
                            max_cache_length = (
         | 
| 1342 | 
            +
                                past_key_values.get_max_length()
         | 
| 1343 | 
            +
                                if hasattr(past_key_values, "get_max_length")
         | 
| 1344 | 
            +
                                else past_key_values.get_max_cache_shape()
         | 
| 1345 | 
            +
                            )
         | 
| 1346 | 
            +
                        else:
         | 
| 1347 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1348 | 
            +
                            max_cache_length = None
         | 
| 1349 | 
            +
             | 
| 1350 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1351 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1352 | 
            +
                        # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input)
         | 
| 1353 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1354 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1355 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1356 | 
            +
                        # input_ids based on the past_length.
         | 
| 1357 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1358 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1359 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1360 | 
            +
             | 
| 1361 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1362 | 
            +
                        if (
         | 
| 1363 | 
            +
                            max_cache_length is not None
         | 
| 1364 | 
            +
                            and attention_mask is not None
         | 
| 1365 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1366 | 
            +
                        ):
         | 
| 1367 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1368 | 
            +
             | 
| 1369 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1370 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1371 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1372 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1373 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1374 | 
            +
                        if past_key_values:
         | 
| 1375 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1376 | 
            +
             | 
| 1377 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1378 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1379 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1380 | 
            +
                    else:
         | 
| 1381 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1382 | 
            +
             | 
| 1383 | 
            +
                    model_inputs.update(
         | 
| 1384 | 
            +
                        {
         | 
| 1385 | 
            +
                            "position_ids": position_ids,
         | 
| 1386 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1387 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1388 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1389 | 
            +
                        }
         | 
| 1390 | 
            +
                    )
         | 
| 1391 | 
            +
                    return model_inputs
         | 
| 1392 | 
            +
             | 
| 1393 | 
            +
                @staticmethod
         | 
| 1394 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1395 | 
            +
                    reordered_past = ()
         | 
| 1396 | 
            +
                    for layer_past in past_key_values:
         | 
| 1397 | 
            +
                        reordered_past += (
         | 
| 1398 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1399 | 
            +
                        )
         | 
| 1400 | 
            +
                    return reordered_past
         | 
| 1401 | 
            +
             | 
| 1402 | 
            +
                @staticmethod
         | 
| 1403 | 
            +
                def _top_k_logits(logits, k):
         | 
| 1404 | 
            +
                    if k is None or k <= 0:
         | 
| 1405 | 
            +
                        return logits
         | 
| 1406 | 
            +
                    else:
         | 
| 1407 | 
            +
                        values, _ = torch.topk(logits, k)
         | 
| 1408 | 
            +
                        min_values = values[..., -1, None]
         | 
| 1409 | 
            +
                        return torch.where(
         | 
| 1410 | 
            +
                            logits < min_values, torch.full_like(logits, float("-inf")), logits
         | 
| 1411 | 
            +
                        )
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                @staticmethod
         | 
| 1414 | 
            +
                def _top_p_logits(logits, p):
         | 
| 1415 | 
            +
                    if p is None or p >= 1.0:
         | 
| 1416 | 
            +
                        return logits
         | 
| 1417 | 
            +
                    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
         | 
| 1418 | 
            +
                    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
         | 
| 1419 | 
            +
                    sorted_mask = cumulative_probs > p
         | 
| 1420 | 
            +
                    sorted_mask[..., 1:] = sorted_mask[..., :-1].clone()
         | 
| 1421 | 
            +
                    sorted_mask[..., 0] = False
         | 
| 1422 | 
            +
                    mask_indices = torch.scatter(
         | 
| 1423 | 
            +
                        torch.full_like(logits, False, dtype=torch.bool),
         | 
| 1424 | 
            +
                        -1,
         | 
| 1425 | 
            +
                        sorted_indices,
         | 
| 1426 | 
            +
                        sorted_mask,
         | 
| 1427 | 
            +
                    )
         | 
| 1428 | 
            +
                    return logits.masked_fill(mask_indices, float("-inf"))
         | 
| 1429 | 
            +
             | 
| 1430 | 
            +
                def _sample_with_temperature_topk_topp(self, logits, temperature=1.0, top_k=0, top_p=1.0):
         | 
| 1431 | 
            +
                    orig_shape = logits.shape[:-1]
         | 
| 1432 | 
            +
                    vocab_size = logits.shape[-1]
         | 
| 1433 | 
            +
                    logits = logits.reshape(-1, vocab_size)
         | 
| 1434 | 
            +
                    if temperature > 0 and temperature != 1.0:
         | 
| 1435 | 
            +
                        logits = logits / temperature
         | 
| 1436 | 
            +
                    logits = self._top_k_logits(logits, top_k)
         | 
| 1437 | 
            +
                    logits = self._top_p_logits(logits, top_p)
         | 
| 1438 | 
            +
                    probs = F.softmax(logits, dim=-1)
         | 
| 1439 | 
            +
                    token = torch.multinomial(probs, num_samples=1)
         | 
| 1440 | 
            +
                    token_prob = torch.gather(probs, -1, token)
         | 
| 1441 | 
            +
                    return token.view(*orig_shape), token_prob.view(*orig_shape)
         | 
| 1442 | 
            +
             | 
| 1443 | 
            +
                @staticmethod
         | 
| 1444 | 
            +
                def _get_num_transfer_tokens(block_length, steps):
         | 
| 1445 | 
            +
                    if steps == 0:
         | 
| 1446 | 
            +
                        return torch.tensor([], dtype=torch.int64)
         | 
| 1447 | 
            +
                    base = block_length // steps
         | 
| 1448 | 
            +
                    remainder = block_length % steps
         | 
| 1449 | 
            +
                    num_transfer_tokens = torch.full((steps,), base, dtype=torch.int64)
         | 
| 1450 | 
            +
                    num_transfer_tokens[:remainder] += 1
         | 
| 1451 | 
            +
                    return num_transfer_tokens
         | 
| 1452 | 
            +
             | 
| 1453 | 
            +
                @torch.no_grad()
         | 
| 1454 | 
            +
                def generate(
         | 
| 1455 | 
            +
                    self,
         | 
| 1456 | 
            +
                    inputs: Optional[torch.Tensor] = None,
         | 
| 1457 | 
            +
                    temperature: int = 0.0,
         | 
| 1458 | 
            +
                    block_length: int = 32,
         | 
| 1459 | 
            +
                    steps: int = 32,
         | 
| 1460 | 
            +
                    gen_length: int = 2048,
         | 
| 1461 | 
            +
                    top_p: Optional[int] = None,
         | 
| 1462 | 
            +
                    top_k: Optional[int] = None,
         | 
| 1463 | 
            +
                    eos_early_stop: bool = False,
         | 
| 1464 | 
            +
                    minimal_topk: int = 1,
         | 
| 1465 | 
            +
                    threshold: float = 0.95,
         | 
| 1466 | 
            +
                    eos_id: int = 156892,
         | 
| 1467 | 
            +
                    mask_id: int = 156895,
         | 
| 1468 | 
            +
                ):
         | 
| 1469 | 
            +
                    r"""
         | 
| 1470 | 
            +
                    Generates tokens using a block-wise, iterative refinement strategy.
         | 
| 1471 | 
            +
             | 
| 1472 | 
            +
                    This method operates differently from standard autoregressive generation. It first creates a template of the
         | 
| 1473 | 
            +
                    full desired length, filled with a special `mask_id`. It then processes this template in segments (`blocks`)
         | 
| 1474 | 
            +
                    and iteratively "denoises" or "refines" the `mask_id` tokens into actual tokens over a series of `steps` for
         | 
| 1475 | 
            +
                    each block. A custom block-diagonal causal attention mask ensures that generation within a block can attend to
         | 
| 1476 | 
            +
                    all previous blocks but not future ones.
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
                    <Tip warning={true}>
         | 
| 1479 | 
            +
             | 
| 1480 | 
            +
                    This is a specialized generation method. The quality and speed of the output are highly dependent on the interplay
         | 
| 1481 | 
            +
                    between `block_length`, `steps`, and `threshold`. It aims to achieve faster generation through parallel
         | 
| 1482 | 
            +
                    decoding within blocks, which is a departure from the token-by-token generation of standard `.generate()` methods.
         | 
| 1483 | 
            +
             | 
| 1484 | 
            +
                    </Tip>
         | 
| 1485 | 
            +
             | 
| 1486 | 
            +
                    Parameters:
         | 
| 1487 | 
            +
                        inputs (`torch.Tensor`):
         | 
| 1488 | 
            +
                            The token sequence used as a prompt for the generation.
         | 
| 1489 | 
            +
                        temperature (`float`, *optional*, defaults to 0.0):
         | 
| 1490 | 
            +
                            The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding.
         | 
| 1491 | 
            +
                        block_length (`int`, *optional*, defaults to 32):
         | 
| 1492 | 
            +
                            The size of each generation block. The model generates text in parallel within these blocks. This is a
         | 
| 1493 | 
            +
                            key parameter for controlling the granularity of the generation process.
         | 
| 1494 | 
            +
                        steps (`int`, *optional*, defaults to 32):
         | 
| 1495 | 
            +
                            The number of iterative refinement (or "denoising") steps to perform for each block. Within each block,
         | 
| 1496 | 
            +
                            the model will try to replace `mask_id` tokens with real tokens for this many iterations.
         | 
| 1497 | 
            +
                        gen_length (`int`, *optional*, defaults to 2048):
         | 
| 1498 | 
            +
                            The maximum number of tokens to generate, excluding the prompt.
         | 
| 1499 | 
            +
                        top_p (`float`, *optional*):
         | 
| 1500 | 
            +
                            If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to
         | 
| 1501 | 
            +
                            `top_p` or higher are kept for generation (nucleus sampling).
         | 
| 1502 | 
            +
                        top_k (`int`, *optional*):
         | 
| 1503 | 
            +
                            The number of highest probability vocabulary tokens to keep for top-k-filtering.
         | 
| 1504 | 
            +
                        eos_early_stop (`bool`, *optional*, defaults to `False`):
         | 
| 1505 | 
            +
                            If `True`, generation will stop as soon as a valid End-Of-Sequence token is generated and confirmed,
         | 
| 1506 | 
            +
                            even if `gen_length` has not been reached.
         | 
| 1507 | 
            +
                        minimal_topk (`int`, *optional*, defaults to 1):
         | 
| 1508 | 
            +
                            A parameter used to dynamically adjust the number of refinement `steps`. The effective number of steps
         | 
| 1509 | 
            +
                            is capped at `gen_length // minimal_topk`.
         | 
| 1510 | 
            +
                        threshold (`float`, *optional*, defaults to 0.95):
         | 
| 1511 | 
            +
                            The confidence probability threshold for accepting a sampled token. During each refinement step, a
         | 
| 1512 | 
            +
                            sampled token is only kept if its probability is above this threshold. If not enough tokens meet the
         | 
| 1513 | 
            +
                            threshold, the ones with the highest confidence are chosen.
         | 
| 1514 | 
            +
                        eos_id (`int`, *optional*, defaults to 156892):
         | 
| 1515 | 
            +
                            The token ID for the end-of-sequence token. Used for `eos_early_stop`.
         | 
| 1516 | 
            +
                        mask_id (`int`, *optional*, defaults to 156895):
         | 
| 1517 | 
            +
                            The token ID used as a placeholder for tokens that are yet to be generated. This is central to the
         | 
| 1518 | 
            +
                            iterative refinement algorithm.
         | 
| 1519 | 
            +
             | 
| 1520 | 
            +
                    Return:
         | 
| 1521 | 
            +
                        `torch.Tensor`: A string containing the generated token IDs, starting
         | 
| 1522 | 
            +
                        after the prompt and stopping at the first `eos_id` or `gen_length`.
         | 
| 1523 | 
            +
                    """
         | 
| 1524 | 
            +
                    steps = min(steps, gen_length // minimal_topk)
         | 
| 1525 | 
            +
                    input_ids = inputs.to(self.device)
         | 
| 1526 | 
            +
             | 
| 1527 | 
            +
                    prompt_length = input_ids.shape[1]
         | 
| 1528 | 
            +
                    num_blocks = (prompt_length + gen_length + block_length - 1) // block_length
         | 
| 1529 | 
            +
                    total_length = num_blocks * block_length
         | 
| 1530 | 
            +
             | 
| 1531 | 
            +
                    block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=self.device))
         | 
| 1532 | 
            +
                    block_diffusion_attention_mask = (
         | 
| 1533 | 
            +
                        block_mask.repeat_interleave(block_length, dim=0)
         | 
| 1534 | 
            +
                        .repeat_interleave(block_length, dim=1)
         | 
| 1535 | 
            +
                        .unsqueeze(0)
         | 
| 1536 | 
            +
                        .unsqueeze(0)
         | 
| 1537 | 
            +
                    ).bool()
         | 
| 1538 | 
            +
                    block_diffusion_attention_mask = torch.where(
         | 
| 1539 | 
            +
                        block_diffusion_attention_mask, 0.0, float("-inf")
         | 
| 1540 | 
            +
                    ).to(torch.bfloat16)
         | 
| 1541 | 
            +
             | 
| 1542 | 
            +
                    position_ids = torch.arange(total_length, device=self.device).unsqueeze(0)
         | 
| 1543 | 
            +
                    x = torch.full((1, total_length), mask_id, dtype=torch.long, device=self.device)
         | 
| 1544 | 
            +
                    x[:, :prompt_length] = input_ids.clone()
         | 
| 1545 | 
            +
             | 
| 1546 | 
            +
                    prompt_index_full = torch.zeros_like(x, dtype=torch.bool)
         | 
| 1547 | 
            +
                    prompt_index_full[:, :prompt_length] = True
         | 
| 1548 | 
            +
             | 
| 1549 | 
            +
                    prefill_blocks = prompt_length // block_length
         | 
| 1550 | 
            +
             | 
| 1551 | 
            +
                    denoising_steps_per_block = steps
         | 
| 1552 | 
            +
                    num_transfer_tokens_schedule = self._get_num_transfer_tokens(
         | 
| 1553 | 
            +
                        block_length, denoising_steps_per_block
         | 
| 1554 | 
            +
                    )
         | 
| 1555 | 
            +
                    for num_block in range(prefill_blocks, num_blocks):
         | 
| 1556 | 
            +
                        current_window_end = (num_block + 1) * block_length
         | 
| 1557 | 
            +
                        cur_x = x[:, :current_window_end]
         | 
| 1558 | 
            +
                        cur_attn_mask = block_diffusion_attention_mask[
         | 
| 1559 | 
            +
                            :, :, :current_window_end, :current_window_end
         | 
| 1560 | 
            +
                        ]
         | 
| 1561 | 
            +
                        cur_position_ids = position_ids[:, :current_window_end]
         | 
| 1562 | 
            +
             | 
| 1563 | 
            +
                        for step in range(denoising_steps_per_block):
         | 
| 1564 | 
            +
                            active_block_mask = cur_x[:, -block_length:] == mask_id
         | 
| 1565 | 
            +
                            if active_block_mask.sum() == 0:
         | 
| 1566 | 
            +
                                break
         | 
| 1567 | 
            +
             | 
| 1568 | 
            +
                            logits = self.forward(
         | 
| 1569 | 
            +
                                cur_x,
         | 
| 1570 | 
            +
                                attention_mask=cur_attn_mask,
         | 
| 1571 | 
            +
                                position_ids=cur_position_ids,
         | 
| 1572 | 
            +
                            ).logits
         | 
| 1573 | 
            +
             | 
| 1574 | 
            +
                            active_logits = logits[:, -block_length:, :]
         | 
| 1575 | 
            +
                            x0, x0_p = self._sample_with_temperature_topk_topp(
         | 
| 1576 | 
            +
                                active_logits, temperature=temperature, top_k=top_k, top_p=top_p
         | 
| 1577 | 
            +
                            )
         | 
| 1578 | 
            +
             | 
| 1579 | 
            +
                            num_to_transfer = num_transfer_tokens_schedule[step].item()
         | 
| 1580 | 
            +
                            transfer_index = torch.zeros_like(x0, dtype=torch.bool)
         | 
| 1581 | 
            +
             | 
| 1582 | 
            +
                            confidence = torch.where(active_block_mask, x0_p, -torch.inf)
         | 
| 1583 | 
            +
                            high_conf_mask = confidence[0] > threshold
         | 
| 1584 | 
            +
                            num_high_confidence = high_conf_mask.sum().item()
         | 
| 1585 | 
            +
             | 
| 1586 | 
            +
                            if num_high_confidence >= num_to_transfer:
         | 
| 1587 | 
            +
                                transfer_index[0] = high_conf_mask
         | 
| 1588 | 
            +
                            else:
         | 
| 1589 | 
            +
                                _, idx = torch.topk(
         | 
| 1590 | 
            +
                                    confidence[0],
         | 
| 1591 | 
            +
                                    k=min(num_to_transfer, active_block_mask.sum().item()),
         | 
| 1592 | 
            +
                                )
         | 
| 1593 | 
            +
                                transfer_index[0, idx] = True
         | 
| 1594 | 
            +
             | 
| 1595 | 
            +
                            if transfer_index.any():
         | 
| 1596 | 
            +
                                cur_x[:, -block_length:][transfer_index] = x0[transfer_index]
         | 
| 1597 | 
            +
                            if eos_early_stop and (x0[transfer_index] == eos_id).any():
         | 
| 1598 | 
            +
                                eos_pos_in_x = (cur_x[0] == eos_id).nonzero(as_tuple=True)
         | 
| 1599 | 
            +
                                if len(eos_pos_in_x[0]) > 0:
         | 
| 1600 | 
            +
                                    eos_pos = eos_pos_in_x[0][0].item()
         | 
| 1601 | 
            +
                                    if (cur_x[0, prompt_length:eos_pos] != mask_id).all():
         | 
| 1602 | 
            +
                                        final_x = x[:, :total_length][:, : eos_pos + 1]
         | 
| 1603 | 
            +
                                        return final_x
         | 
| 1604 | 
            +
             | 
| 1605 | 
            +
                        x[:, :current_window_end] = cur_x
         | 
| 1606 | 
            +
                        if (
         | 
| 1607 | 
            +
                            eos_id is not None
         | 
| 1608 | 
            +
                            and (x[0, prompt_length:current_window_end] == eos_id).any()
         | 
| 1609 | 
            +
                        ):
         | 
| 1610 | 
            +
                            break
         | 
| 1611 | 
            +
             | 
| 1612 | 
            +
                    generated_answer = x[:, : prompt_length + gen_length]
         | 
| 1613 | 
            +
             | 
| 1614 | 
            +
                    mask_positions = (generated_answer[0][input_ids.shape[1] :] == eos_id).nonzero(
         | 
| 1615 | 
            +
                        as_tuple=True
         | 
| 1616 | 
            +
                    )[0]
         | 
| 1617 | 
            +
                    if len(mask_positions) > 0:
         | 
| 1618 | 
            +
                        first_mask_position = mask_positions[0].item()
         | 
| 1619 | 
            +
                    else:
         | 
| 1620 | 
            +
                        first_mask_position = gen_length
         | 
| 1621 | 
            +
                    return generated_answer[:, input_ids.shape[1] : input_ids.shape[1] + first_mask_position + 1]
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": "<|startoftext|>",
         | 
| 3 | 
            +
              "cls_token": "[CLS]",
         | 
| 4 | 
            +
              "eos_token": "<|endoftext|>",
         | 
| 5 | 
            +
              "gmask_token": "[gMASK]",
         | 
| 6 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 7 | 
            +
              "mask_token": "<|mask|>"
         | 
| 8 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 

