added first commit
Browse files- README.md +127 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: id
|
| 3 |
+
datasets:
|
| 4 |
+
- common_voice
|
| 5 |
+
metrics:
|
| 6 |
+
- wer
|
| 7 |
+
tags:
|
| 8 |
+
- audio
|
| 9 |
+
- automatic-speech-recognition
|
| 10 |
+
- speech
|
| 11 |
+
- xlsr-fine-tuning-week
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
model-index:
|
| 14 |
+
- name: XLSR Wav2Vec2 Indonesian by Galuh
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
name: Speech Recognition
|
| 18 |
+
type: automatic-speech-recognition
|
| 19 |
+
dataset:
|
| 20 |
+
name: Common Voice id
|
| 21 |
+
type: common_voice
|
| 22 |
+
args: id
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Test WER
|
| 25 |
+
type: wer
|
| 26 |
+
value: 20.67
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# Wav2Vec2-Large-XLSR-Indonesian
|
| 30 |
+
|
| 31 |
+
This is the model for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned
|
| 32 |
+
[facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
|
| 33 |
+
model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice).
|
| 34 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 35 |
+
|
| 36 |
+
## Usage
|
| 37 |
+
The model can be used directly (without a language model) as follows:
|
| 38 |
+
```python
|
| 39 |
+
import torch
|
| 40 |
+
import torchaudio
|
| 41 |
+
from datasets import load_dataset
|
| 42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 43 |
+
|
| 44 |
+
test_dataset = load_dataset("common_voice", "id", split="test[:2%]")
|
| 45 |
+
|
| 46 |
+
processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
|
| 47 |
+
model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
|
| 48 |
+
|
| 49 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 50 |
+
|
| 51 |
+
# Preprocessing the datasets.
|
| 52 |
+
# We need to read the aduio files as arrays
|
| 53 |
+
def speech_file_to_array_fn(batch):
|
| 54 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 55 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 56 |
+
return batch
|
| 57 |
+
|
| 58 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 63 |
+
|
| 64 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
+
|
| 66 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 67 |
+
print("Reference:", test_dataset["sentence"][:2])
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Evaluation
|
| 72 |
+
|
| 73 |
+
The model can be evaluated as follows on the Indonesian test data of Common Voice.
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
import torch
|
| 77 |
+
import torchaudio
|
| 78 |
+
from datasets import load_dataset, load_metric
|
| 79 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 80 |
+
import re
|
| 81 |
+
|
| 82 |
+
test_dataset = load_dataset("common_voice", "id", split="test")
|
| 83 |
+
wer = load_metric("wer")
|
| 84 |
+
|
| 85 |
+
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baselin")
|
| 86 |
+
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline")
|
| 87 |
+
model.to("cuda")
|
| 88 |
+
|
| 89 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
| 90 |
+
|
| 91 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 92 |
+
|
| 93 |
+
# Preprocessing the datasets.
|
| 94 |
+
# We need to read the aduio files as arrays
|
| 95 |
+
def speech_file_to_array_fn(batch):
|
| 96 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 97 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 98 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 99 |
+
return batch
|
| 100 |
+
|
| 101 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
+
|
| 103 |
+
# Preprocessing the datasets.
|
| 104 |
+
# We need to read the aduio files as arrays
|
| 105 |
+
def evaluate(batch):
|
| 106 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 107 |
+
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 110 |
+
|
| 111 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 112 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 113 |
+
return batch
|
| 114 |
+
|
| 115 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
+
|
| 117 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
**Test Result**: 20.67 %
|
| 121 |
+
|
| 122 |
+
## Training
|
| 123 |
+
|
| 124 |
+
The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
|
| 125 |
+
|
| 126 |
+
The script used for training can be found [here](https://github.com/galuhsahid/wav2vec2-indonesian)
|
| 127 |
+
(will be available soon)
|
config.json
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
| 3 |
+
"activation_dropout": 0.055,
|
| 4 |
+
"apply_spec_augment": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"Wav2Vec2ForCTC"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.094,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"conv_bias": true,
|
| 11 |
+
"conv_dim": [
|
| 12 |
+
512,
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512
|
| 19 |
+
],
|
| 20 |
+
"conv_kernel": [
|
| 21 |
+
10,
|
| 22 |
+
3,
|
| 23 |
+
3,
|
| 24 |
+
3,
|
| 25 |
+
3,
|
| 26 |
+
2,
|
| 27 |
+
2
|
| 28 |
+
],
|
| 29 |
+
"conv_stride": [
|
| 30 |
+
5,
|
| 31 |
+
2,
|
| 32 |
+
2,
|
| 33 |
+
2,
|
| 34 |
+
2,
|
| 35 |
+
2,
|
| 36 |
+
2
|
| 37 |
+
],
|
| 38 |
+
"ctc_loss_reduction": "mean",
|
| 39 |
+
"ctc_zero_infinity": true,
|
| 40 |
+
"do_stable_layer_norm": true,
|
| 41 |
+
"eos_token_id": 2,
|
| 42 |
+
"feat_extract_activation": "gelu",
|
| 43 |
+
"feat_extract_dropout": 0.0,
|
| 44 |
+
"feat_extract_norm": "layer",
|
| 45 |
+
"feat_proj_dropout": 0.04,
|
| 46 |
+
"final_dropout": 0.0,
|
| 47 |
+
"gradient_checkpointing": true,
|
| 48 |
+
"hidden_act": "gelu",
|
| 49 |
+
"hidden_dropout": 0.047,
|
| 50 |
+
"hidden_size": 1024,
|
| 51 |
+
"initializer_range": 0.02,
|
| 52 |
+
"intermediate_size": 4096,
|
| 53 |
+
"layer_norm_eps": 1e-05,
|
| 54 |
+
"layerdrop": 0.041,
|
| 55 |
+
"mask_channel_length": 10,
|
| 56 |
+
"mask_channel_min_space": 1,
|
| 57 |
+
"mask_channel_other": 0.0,
|
| 58 |
+
"mask_channel_prob": 0.0,
|
| 59 |
+
"mask_channel_selection": "static",
|
| 60 |
+
"mask_feature_length": 10,
|
| 61 |
+
"mask_feature_prob": 0.0,
|
| 62 |
+
"mask_time_length": 10,
|
| 63 |
+
"mask_time_min_space": 1,
|
| 64 |
+
"mask_time_other": 0.0,
|
| 65 |
+
"mask_time_prob": 0.4,
|
| 66 |
+
"mask_time_selection": "static",
|
| 67 |
+
"model_type": "wav2vec2",
|
| 68 |
+
"num_attention_heads": 16,
|
| 69 |
+
"num_conv_pos_embedding_groups": 16,
|
| 70 |
+
"num_conv_pos_embeddings": 128,
|
| 71 |
+
"num_feat_extract_layers": 7,
|
| 72 |
+
"num_hidden_layers": 24,
|
| 73 |
+
"pad_token_id": 30,
|
| 74 |
+
"transformers_version": "4.5.0.dev0",
|
| 75 |
+
"vocab_size": 31
|
| 76 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_size": 1,
|
| 4 |
+
"padding_side": "right",
|
| 5 |
+
"padding_value": 0.0,
|
| 6 |
+
"return_attention_mask": true,
|
| 7 |
+
"sampling_rate": 16000
|
| 8 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9536cc48af00be4df5d8f14b1b726343606518bee671e36434904f1062286392
|
| 3 |
+
size 1262060951
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"l": 0, "p": 1, "!": 2, "n": 3, "x": 4, "j": 5, "z": 6, "g": 7, "k": 9, "d": 10, "r": 11, "i": 12, "y": 13, "u": 14, "a": 15, "e": 16, ",": 17, "f": 18, "b": 19, "m": 20, "h": 21, "t": 22, "s": 23, "c": 24, "v": 25, "w": 26, "é": 27, "o": 28, "|": 8, "[UNK]": 29, "[PAD]": 30}
|