Update README.md
Browse files
README.md
CHANGED
|
@@ -35,8 +35,9 @@ from PIL import Image
|
|
| 35 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 36 |
ckpt_path = "internlm/internlm-xcomposer2-7b"
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
|
|
|
|
| 38 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
| 39 |
-
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 40 |
model = model.eval()
|
| 41 |
img_path_list = [
|
| 42 |
'./panda.jpg',
|
|
@@ -72,8 +73,9 @@ from PIL import Image
|
|
| 72 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 73 |
ckpt_path = "internlm/internlm-xcomposer2-7b"
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
|
|
|
|
| 75 |
# `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
|
| 76 |
-
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 77 |
model = model.eval()
|
| 78 |
img_path_list = [
|
| 79 |
'./panda.jpg',
|
|
|
|
| 35 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 36 |
ckpt_path = "internlm/internlm-xcomposer2-7b"
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float32, trust_remote_code=True).cuda()
|
| 39 |
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
| 40 |
+
# model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 41 |
model = model.eval()
|
| 42 |
img_path_list = [
|
| 43 |
'./panda.jpg',
|
|
|
|
| 73 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 74 |
ckpt_path = "internlm/internlm-xcomposer2-7b"
|
| 75 |
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
|
| 76 |
+
model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float32, trust_remote_code=True).cuda()
|
| 77 |
# `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
|
| 78 |
+
# model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 79 |
model = model.eval()
|
| 80 |
img_path_list = [
|
| 81 |
'./panda.jpg',
|