--- pipeline_tag: object-detection tags: - form-field-detection - documents - commonforms library_name: commonforms datasets: - jbarrow/CommonForms --- 🪄 Automatically convert a PDF into a fillable form. [💻 Hosted Models (detect.semanticdocs.org)](https://detect.semanticdocs.org) | [📄 CommonForms Paper](https://arxiv.org/abs/2509.16506) | [🤗 Dataset](https://huggingface.co/datasets/jbarrow/CommonForms) | [🦾 Models](https://github.com/jbarrow/commonforms/tree/main/commonforms/models) ![Pipeline](https://raw.githubusercontent.com/jbarrow/commonforms/main/assets/pipeline.png) # FFDNet-L-cpu FFDNet-L is the 25 million parameter object detector trained on the dataset from the paper [CommonForms: A Large, Diverse Dataset for Form Field Detection](https://arxiv.org/abs/2509.16506). The model detects widgets from among three classes: TextBoxes, ChoiceButtons (checkboxes), and Signature fields. ⚠️ This is the CPU-optimized ONNX export of the model! ## Results | Model | Text | Choice | Signature | AP (↑) | |-------|------|--------|-----------|--------| | FFDNet-S (1216px) | 61.5 | 71.3 | 84.2 | 72.3 | | FFDNet-L (1216px) | 71.4 | 78.1 | 93.5 | 81.0 | ## Installation The `commonforms` package can be installed with either `uv` or `pip`, feel free to choose your package manager flavor. The `uv` command: ```sh uv pip install commonforms ``` The `pip` command: ``` pip install commonforms ``` Once it's installed, you should be able to run the CLI command on ~any PDF. Refer to [the `commonforms` documentation](https://github.com/jbarrow/commonforms) for the latest information. ## CLI The simplest usage will run inference on your CPU using the default suggested settings: ``` commonforms ``` | Input | Output | |-------|--------| | ![Input PDF](https://raw.githubusercontent.com/jbarrow/commonforms/main/assets/input.png) | ![Output PDF](https://raw.githubusercontent.com/jbarrow/commonforms/main/assets/output.png) | ### Command Line Arguments | Argument | Type | Default | Description | |----------|------|---------|-------------| | `input` | Path | Required | Path to the input PDF file | | `output` | Path | Required | Path to save the output PDF file | | `--model` | str | `FFDNet-L` | Model name (FFDNet-L/FFDNet-S) or path to custom .pt file | | `--keep-existing-fields` | flag | `False` | Keep existing form fields in the PDF | | `--use-signature-fields` | flag | `False` | Use signature fields instead of text fields for detected signatures | | `--device` | str | `cpu` | Device for inference (e.g., `cpu`, `cuda`, `0`) | | `--image-size` | int | `1600` | Image size for inference | | `--confidence` | float | `0.3` | Confidence threshold for detection | | `--fast` | flag | `False` | If running on a CPU, you can trade off accuracy for speed and run in about half the time | ## CommonForms API In addition to the CLI, you can use ```py from commonforms import prepare_form prepare_form( "path/to/input.pdf", "path/to/output.pdf" ) ``` All of the above arguments are keyword arguments to the `prepare_form` function. E.g. if you want to prepare a with signature fields and keep existing fields at 1216 resolution, you would run: ``` from commonforms import prepare_form prepare_form( "path/to/input.pdf", "path/to/output.pdf", keep_existing_fields=True, use_signature_fields=True, image_size=1216 ) ``` ## References * [CommonForms: A Large, Diverse Dataset for Form Field Detection](https://arxiv.org/abs/2509.16506)