File size: 11,013 Bytes
5e94a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Copyright 2025 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0

from __future__ import annotations

from collections import OrderedDict
from typing import Optional, Tuple, Callable

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from transformers.activations import ACT2FN

from .dconv_fwdbwd import dynamic_conv_triton_autograd
from .dconv_fwd_cache import dynamic_conv_triton_cache
from .dconv_step import causal_conv_step_triton


class DynamicShortConvolution(nn.Module):
    """
    Simple wrapper around `nn.Conv1d` that accepts dimension last.
    """

    def __init__(
        self,
        hidden_size: int,
        kernel_size: int,
        generator_input_size: Optional[int] = None,
        generator_reduction: Optional[int] = None,
        generator_activation: str = 'silu',
        activation: Optional[str] = 'silu',
        static_conv_init: Callable = None,
        use_fast_conv1d: bool = True,
        implementation: str = "naive",
    ) -> DynamicShortConvolution:
        super().__init__()

        self.hidden_size = hidden_size
        self.generator_input_size = hidden_size if generator_input_size is None else generator_input_size
        self.generator_hidden_size = hidden_size if generator_reduction is None else (hidden_size // generator_reduction)
        self.kernel_size = kernel_size
        self.activation = None
        self.use_fast_conv1d = use_fast_conv1d
        self.implementation = implementation

        if activation is not None:
            assert activation in ['silu', 'swish'], f"Activation `{activation}` not supported yet."
            self.activation = activation
        
        self.static_conv_init = static_conv_init
        
        self.kernel_generator = nn.Sequential(
            OrderedDict([
                ("w1", nn.Linear(self.generator_input_size, self.generator_hidden_size, bias=False)),
                ("act", ACT2FN[generator_activation]),
                ("w2", nn.Linear(self.generator_hidden_size, self.hidden_size * self.kernel_size, bias=True)),
            ])
        )
        self._init_kernel_generator()

    def _init_kernel_generator(self):
        """
        Initialize the kernel generator.
        """
        for layer in self.kernel_generator:
            if isinstance(layer, nn.Linear):
                layer.weight.data.zero_()
                if layer.bias is not None:
                    layer.bias.data.zero_()
        
        if self.static_conv_init is not None:
            # init for static_bias
            self.static_conv_init(self.kernel_generator.w2.bias)

    def get_kernel(self, x: torch.Tensor) -> torch.Tensor:
        flat_kernels = self.kernel_generator(x)
        if flat_kernels.dim() == 3:
            kernels = rearrange(flat_kernels, 'b t (d w) -> b t d w', w=self.kernel_size)
        elif flat_kernels.dim() == 2:
            kernels = rearrange(flat_kernels, 'b (d w) -> b d w', w=self.kernel_size)
        else:
            raise ValueError(f"Invalid kernel shape: {flat_kernels.shape}")
        return kernels

    def forward(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        cache: Optional[torch.Tensor] = None,
        output_final_state: bool = False,
        cu_seqlens: Optional[torch.LongTensor] = None,
        generator_input: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Args:
            x (`torch.Tensor`):
                Tensor of shape `[B, T, D]`.
                If `seq_idx` is provided, `B` must be 1.
            mask (`Optional[torch.Tensor]`):
                Attention mask dealing with padded positions.
            cache (`Optional[torch.Tensor]`):
                Previous cache tensor of shape `[N, D, W]`, where `W` is the kernel size.
                If provided, the cache is updated **inplace**.
            output_final_state (Optional[bool]):
                Whether to output the final state of shape `[N, D, W]`. Default: `False`.
            cu_seqlens (Optional[torch.LongTensor]):
                Cumulative sequence lengths for each batch. Used for varlen. Default: `None`.
                Shape: [B+1]

        Returns:
            Tensor of shape `[B, T, D]`.
        """

        """
        x: [B, T, D]
        return: [B, T, D]
        """
        
        assert cu_seqlens is None, "cu_seqlens not supported yet."
        
        B, T, D, W = *x.shape, self.kernel_size
        N = B

        input_dtype = x.dtype

        if mask is not None:
            x = x.mul_(mask.unsqueeze(-1))

        implementation = self.implementation
        if implementation == "triton" and not self.training:
            implementation = "triton_cache"

        # during the decoding phase, we assume the batch is composed of sequences of length 1
        if cache is not None and B * T == N:
            assert T == 1
            if implementation in ["naive", "triton_training"]:
                x, cache = self._step_naive(x, cache, cu_seqlens, generator_input=generator_input)
            elif implementation in ["triton", "triton_cache", "triton_decoding"]:
                x, cache = self._step_triton(x, cache, cu_seqlens, generator_input=generator_input)
            else:
                raise ValueError(f"Unknown implementation: {implementation}")
            return x, cache

        if output_final_state:
            new_cache = rearrange(x[..., -min(W, T):, :], 'n w d -> n d w')
        else:
            new_cache = None
        
        if implementation in ["naive", "triton_decoding"]:
            x = self._forward_naive(x, generator_input=generator_input)  # [B, T, D]
        elif implementation in ["triton", "triton_training"]:
            assert cache is None, "Cache not supported in pure triton mode. Please set model.eval() or use triton_cache mode."
            x = self._forward_triton(x, generator_input=generator_input)
        elif implementation == "triton_cache":
            x = self._forward_triton_cache(x, generator_input=generator_input, cache=cache)
        else:
            raise ValueError(f"Unknown implementation: {implementation}")

        if self.activation is not None:
            x = ACT2FN[self.activation](x)
        
        x = x.to(input_dtype)
        if output_final_state:
            if cache is None:
                cache = x.new_zeros(N, D, W)
            cache[:, :, -min(W, T):].copy_(new_cache)

        return x, cache

    def _forward_naive(self, x: torch.Tensor, generator_input: Optional[torch.Tensor] = None) -> torch.Tensor:
        W = self.kernel_size
        generator_input = x if generator_input is None else generator_input
        kernels = self.get_kernel(generator_input)
        x = F.pad(x.transpose(1, 2), (W - 1, 0))  # [B, D, T+W-1]
        x = x.unfold(dimension=2, size=W, step=1)  # [B, D, T, W]
        x = x.permute(0, 2, 1, 3)  # [B, T, D, W]
        x = (x * kernels).sum(dim=-1)  # [B, T, D]
        return x

    def _forward_triton(self, x: torch.Tensor, generator_input: Optional[torch.Tensor] = None) -> torch.Tensor:
        generator_input = x if generator_input is None else generator_input
        kernels = self.get_kernel(generator_input)
        output_triton = dynamic_conv_triton_autograd(x, kernels)
        return output_triton

    @torch.no_grad
    def _forward_triton_cache(self, x: torch.Tensor, generator_input: Optional[torch.Tensor] = None, cache: Optional[torch.Tensor] = None) -> torch.Tensor:
        generator_input = x if generator_input is None else generator_input
        assert not self.training, "Triton implementation is only available in eval mode."
        # cache: [B, D, T(W)]
        CHUNK_SIZE = 2048
        n_chunk = (x.shape[1] + CHUNK_SIZE - 1) // CHUNK_SIZE
        output_triton = torch.zeros_like(x)
        if cache is not None:
            cache = rearrange(cache, "b d t -> b t d")  # [B, T(W), D]
        for i in range(n_chunk):
            start = i * CHUNK_SIZE
            end = min((i + 1) * CHUNK_SIZE, x.shape[1])
            kernels = self.get_kernel(generator_input[:, start:end])
            out = dynamic_conv_triton_cache(x[:, start:end], kernels, cache=cache)
            output_triton[:, i*CHUNK_SIZE:end, :] = out
            cache = x[:, end-self.kernel_size:end, :]
        return output_triton

    def _step_naive(
        self,
        x: torch.Tensor,
        cache: torch.Tensor,
        cu_seqlens: Optional[torch.LongTensor] = None,
        generator_input: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        assert x.shape[1] == 1, "x must be of shape [B, 1, D]"
        shape = x.shape
        generator_input = x if generator_input is None else generator_input
        x = x.squeeze(1)
        generator_input = generator_input.squeeze(1) # Shape [B, D]
        B, D, W = *x.shape, self.kernel_size

        # we follow the fast mode that updates the cache in-place
        cache.copy_(cache.roll(shifts=-1, dims=-1))
        cache[:, :, -1] = x # [B, D, T(W)]
        
        kernels = self.get_kernel(generator_input) # [B, D, W]
        x = torch.sum(cache * kernels, dim=-1)
        
        if self.activation is not None:
            x = ACT2FN[self.activation](x)
        
        return x.view(shape), cache
    
    def _step_triton(
        self,
        x: torch.Tensor,
        cache: torch.Tensor,
        cu_seqlens: Optional[torch.LongTensor] = None,
        generator_input: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # --- Triton Implementation ---
        assert x.shape[1] == 1, "x must be of shape [B, 1, D]"
        shape = x.shape # Keep original shape [B, 1, D] for return
        generator_input = x if generator_input is None else generator_input

        # 1. Generate kernels
        kernels_triton = self.get_kernel(generator_input.squeeze(1)) # [B, D, W]

        # 2. Call Triton kernel without activation
        x_out_triton = causal_conv_step_triton(
            x,
            cache,
            kernels_triton,
        )
        
        # Apply activation (if any) after kernel execution
        if self.activation is not None:
            x_out_triton = ACT2FN[self.activation](x_out_triton)

        # 3. Return reshaped output and the *same cache tensor* (it was updated in-place)
        return x_out_triton.view(shape), cache