|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.generation import GenerationMixin, GenerationConfig |
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import PreTrainedModel, ALL_ATTENTION_FUNCTIONS |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import ( |
|
|
LossKwargs, |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
can_return_tuple, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
from transformers.utils.deprecation import deprecate_kwarg |
|
|
|
|
|
|
|
|
from .configuration_jet_nemotron import JetNemotronConfig |
|
|
from .jet_block import JetBlock |
|
|
from .kv_cache import JetNemotronCache |
|
|
|
|
|
try: |
|
|
from .dynamic_conv import DynamicShortConvolution |
|
|
from .dconv_fwdbwd import dynamic_conv_triton_autograd |
|
|
from .dconv_fwd_cache import dynamic_conv_triton_cache |
|
|
from .dconv_step import causal_conv_step_triton |
|
|
except ImportError: |
|
|
raise ImportError( |
|
|
"Dynamic convolution is not available. Please install the required dependencies to use this feature." |
|
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "jet-ai/Jet-Nemotron-2B" |
|
|
_CONFIG_FOR_DOC = "JetNemotronConfig" |
|
|
|
|
|
|
|
|
class JetNemotronMLP(nn.Module): |
|
|
def __init__(self, config: JetNemotronConfig): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, hidden_state): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class JetNemotronAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: JetNemotronConfig, layer_idx: Optional[int] = None, sliding_window: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.sliding_window = sliding_window |
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
|
|
def _get_target_length( |
|
|
self, |
|
|
sequence_length: int, |
|
|
past_key_values: JetNemotronCache, |
|
|
): |
|
|
past_seen_tokens = past_key_values.get_seq_length(self.layer_idx) if past_key_values is not None else 0 |
|
|
target_length = sequence_length + min(past_seen_tokens, self.sliding_window - 1) |
|
|
return target_length |
|
|
|
|
|
def _update_causal_mask_for_sliding_window( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
past_key_values: JetNemotronCache, |
|
|
) -> torch.Tensor: |
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
target_length = self._get_target_length(sequence_length, past_key_values) |
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length(self.layer_idx) if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + sequence_length, device=input_tensor.device |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
assert attention_mask.dim() == 4, "Attention mask must be 4D" |
|
|
diagonal_attend_mask = attention_mask < -1 |
|
|
diagonal_attend_mask = diagonal_attend_mask[:, :, :, -target_length:] |
|
|
else: |
|
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
|
diagonal_attend_mask = diagonal_attend_mask[None, None, :, :] |
|
|
|
|
|
if past_key_values is None or target_length > self.sliding_window: |
|
|
|
|
|
sliding_attend_mask = torch.arange(past_seen_tokens + sequence_length, device=device)[-target_length:] <= ( |
|
|
cache_position.reshape(-1, 1) - self.sliding_window |
|
|
) |
|
|
sliding_attend_mask = sliding_attend_mask[None, None, :, :] |
|
|
|
|
|
diagonal_attend_mask = diagonal_attend_mask | sliding_attend_mask |
|
|
|
|
|
|
|
|
causal_mask = torch.full( |
|
|
(1, 1, sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
|
) |
|
|
causal_mask = causal_mask * diagonal_attend_mask |
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[JetNemotronCache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
if self.sliding_window is not None and self.config._attn_implementation != "flash_attention_2": |
|
|
attention_mask = self._update_causal_mask_for_sliding_window(attention_mask, hidden_states, past_key_value) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
state = past_key_value.update( |
|
|
attn_state=(key_states, value_states), layer_idx=self.layer_idx, |
|
|
offset = hidden_states.shape[1], |
|
|
cache_kwargs={"window_size": self.sliding_window}) |
|
|
key_states, value_states = state["attn_state"] |
|
|
|
|
|
fa2_sliding_window = None |
|
|
if self.sliding_window is not None: |
|
|
fa2_sliding_window = self.sliding_window - 1 |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
if self.config._attn_implementation == "sdpa": |
|
|
past_seen_tokens = past_key_value.get_seq_length() if past_key_value is not None else 0 |
|
|
if self.sliding_window is None: |
|
|
|
|
|
|
|
|
|
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
|
attention_mask, |
|
|
inputs_embeds=hidden_states, |
|
|
past_key_values_length=past_seen_tokens, |
|
|
sliding_window=self.sliding_window, |
|
|
is_training=self.training, |
|
|
): |
|
|
attention_mask = None |
|
|
|
|
|
elif self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None: |
|
|
assert len(attention_mask.shape) == 2, "Attention mask must be 2D" |
|
|
attention_mask = attention_mask[:, -key_states.shape[2]:] |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Unsupported attention implementation: {self.config._attn_implementation}. " |
|
|
"Supported implementations are: eager, sdpa, flash_attention_2." |
|
|
) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
|
|
|
|
logger.warning_once( |
|
|
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " |
|
|
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
|
) |
|
|
else: |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=fa2_sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
if self.sliding_window is not None and past_key_value is not None: |
|
|
past_key_value.trim_attn_state(self.layer_idx, self.sliding_window) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class JetNemotronRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
JetNemotronRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return (self.weight * hidden_states).to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
EFFICIENT_ATTENTION_CLASSES = { |
|
|
"jet": JetBlock, |
|
|
} |
|
|
|
|
|
|
|
|
class JetNemotronDecoderLayer(nn.Module): |
|
|
def __init__(self, config: JetNemotronConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
if config.layer_types[layer_idx] == "attn": |
|
|
self.self_attn = JetNemotronAttention(config, layer_idx) |
|
|
elif config.layer_types[layer_idx] == "swa": |
|
|
assert config.efficient_attention_config is not None, "Efficient attention config must be provided in JetNemotronConfig." |
|
|
assert "swa" in config.efficient_attention_config, ( |
|
|
"Sliding Window Attention is enabled but no `swa` configuration found in `efficient_attention_config`." |
|
|
) |
|
|
self.self_attn = JetNemotronAttention(config, layer_idx, sliding_window=config.efficient_attention_config["swa"]["window_size"]) |
|
|
else: |
|
|
assert config.layer_types[layer_idx] in EFFICIENT_ATTENTION_CLASSES, ( |
|
|
f"Layer type {config.layer_types[layer_idx]} not supported. Supported types are: " |
|
|
f"{['attn', 'swa'] + list(EFFICIENT_ATTENTION_CLASSES.keys())}" |
|
|
) |
|
|
self.self_attn = EFFICIENT_ATTENTION_CLASSES[config.layer_types[layer_idx]](config, config.layer_types[layer_idx], layer_idx) |
|
|
|
|
|
self.mlp = JetNemotronMLP(config) |
|
|
self.input_layernorm = JetNemotronRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = JetNemotronRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
residual = hidden_states |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class JetNemotronRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: JetNemotronConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
JET_START_DOCSTRING = r""" |
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
|
etc.) |
|
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
|
and behavior. |
|
|
|
|
|
Parameters: |
|
|
config ([`JetNemotronConfig`]): |
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
|
load the weights associated with the model, only the configuration. Check out the |
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare Jet-Nemotron Model outputting raw hidden-states without any specific head on top.", |
|
|
JET_START_DOCSTRING, |
|
|
) |
|
|
class JetNemotronPreTrainedModel(PreTrainedModel): |
|
|
config_class = JetNemotronConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["JetNemotronDecoderLayer"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = False |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = False |
|
|
_supports_static_cache = False |
|
|
_supports_attention_backend = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
JET_INPUTS_DOCSTRING = r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
|
it. |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
|
`past_key_values`). |
|
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
|
information on the default strategy. |
|
|
|
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
|
config.n_positions - 1]`. |
|
|
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
past_key_values (`Cache`, *optional*): |
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
|
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
|
of shape `(batch_size, sequence_length)`. |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
|
model's internal embedding lookup matrix. |
|
|
use_cache (`bool`, *optional*): |
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
|
`past_key_values`). |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
|
tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
|
more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
|
the complete sequence length. |
|
|
""" |
|
|
|
|
|
|
|
|
@add_start_docstrings( |
|
|
"The bare Jet Nemotron Model outputting raw hidden-states without any specific head on top.", |
|
|
JET_START_DOCSTRING, |
|
|
) |
|
|
class JetNemotronModel(JetNemotronPreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JetNemotronDecoderLayer`] |
|
|
|
|
|
Args: |
|
|
config: JetNemotronConfig |
|
|
""" |
|
|
|
|
|
def __init__(self, config: JetNemotronConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[JetNemotronDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self._attn_implementation = config._attn_implementation |
|
|
assert self._attn_implementation in ["sdpa", "flash_attention_2"] |
|
|
self.norm = JetNemotronRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = JetNemotronRotaryEmbedding(config=config) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@can_return_tuple |
|
|
@add_start_docstrings_to_model_forward(JET_INPUTS_DOCSTRING) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[JetNemotronCache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = JetNemotronCache() |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = self._update_causal_mask( |
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
partial(decoder_layer.__call__, **flash_attn_kwargs), |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
def _update_causal_mask( |
|
|
self, |
|
|
attention_mask: torch.Tensor, |
|
|
input_tensor: torch.Tensor, |
|
|
cache_position: torch.Tensor, |
|
|
past_key_values: JetNemotronCache, |
|
|
output_attentions: bool, |
|
|
): |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
if attention_mask is not None and past_key_values is not None: |
|
|
is_empty = attention_mask.sum(dim=-1).long() == 0 |
|
|
last_is_1 = (attention_mask[:, -1].long() == 1) | is_empty |
|
|
is_padding_right = last_is_1.sum().item() != input_tensor.size()[0] |
|
|
if is_padding_right: |
|
|
raise ValueError( |
|
|
"You are attempting to perform batched generation with padding_side='right'" |
|
|
" this may lead to unexpected behaviour for Flash Attention version of Jet-Nemotron. Make sure to " |
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
|
) |
|
|
if attention_mask is not None and 0.0 in attention_mask: |
|
|
return attention_mask |
|
|
return None |
|
|
|
|
|
if self.config._attn_implementation == "flex_attention": |
|
|
raise NotImplementedError( |
|
|
"Flex attention is not supported yet. Please use `flash_attention_2`, `eager`, or `sdpa` instead." |
|
|
) |
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
sequence_length = input_tensor.shape[1] |
|
|
|
|
|
target_length = ( |
|
|
attention_mask.shape[-1] |
|
|
if isinstance(attention_mask, torch.Tensor) |
|
|
else past_seen_tokens + sequence_length + 1 |
|
|
) |
|
|
|
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask, |
|
|
sequence_length=sequence_length, |
|
|
target_length=target_length, |
|
|
dtype=dtype, |
|
|
cache_position=cache_position, |
|
|
batch_size=input_tensor.shape[0], |
|
|
config=self.config, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
if ( |
|
|
self.config._attn_implementation == "sdpa" |
|
|
and attention_mask is not None |
|
|
and attention_mask.device.type == "cuda" |
|
|
and not output_attentions |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
|
|
return causal_mask |
|
|
|
|
|
@staticmethod |
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
|
attention_mask: torch.Tensor, |
|
|
sequence_length: int, |
|
|
target_length: int, |
|
|
dtype: torch.dtype, |
|
|
cache_position: torch.Tensor, |
|
|
batch_size: int, |
|
|
config: JetNemotronConfig, |
|
|
past_key_values: JetNemotronCache, |
|
|
): |
|
|
""" |
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
|
|
Args: |
|
|
attention_mask (`torch.Tensor`): |
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
|
sequence_length (`int`): |
|
|
The sequence length being processed. |
|
|
target_length (`int`): |
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
|
dtype (`torch.dtype`): |
|
|
The dtype to use for the 4D attention mask. |
|
|
cache_position (`torch.Tensor`): |
|
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
|
batch_size (`torch.Tensor`): |
|
|
Batch size. |
|
|
config (`JetNemotronConfig`): |
|
|
The model's configuration class |
|
|
past_key_values (`Cache`): |
|
|
The cache class that is being used currently to generate |
|
|
""" |
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
causal_mask = attention_mask |
|
|
else: |
|
|
min_dtype = torch.finfo(dtype).min |
|
|
causal_mask = torch.full( |
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
|
) |
|
|
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape( |
|
|
-1, 1 |
|
|
) |
|
|
causal_mask *= diagonal_attend_mask |
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
|
if attention_mask is not None: |
|
|
causal_mask = causal_mask.clone() |
|
|
if attention_mask.shape[-1] > target_length: |
|
|
attention_mask = attention_mask[:, :target_length] |
|
|
mask_length = attention_mask.shape[-1] |
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
|
causal_mask.device |
|
|
) |
|
|
padding_mask = padding_mask == 0 |
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
|
padding_mask, min_dtype |
|
|
) |
|
|
return causal_mask |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
|
|
|
class JetNemotronForCausalLM(JetNemotronPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config: JetNemotronConfig): |
|
|
super().__init__(config) |
|
|
self.model = JetNemotronModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") |
|
|
@add_start_docstrings_to_model_forward(JET_INPUTS_DOCSTRING) |
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[JetNemotronCache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[KwargsForCausalLM], |
|
|
) -> CausalLMOutputWithPast: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*): |
|
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all |
|
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. |
|
|
This is useful when using packed tensor format (single dimension for batch and sequence length). |
|
|
|
|
|
Returns: |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained("jet-ai/Jet-Nemotron-2B") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("jet-ai/Jet-Nemotron-2B") |
|
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> # Generate |
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
|
```""" |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
|
|
|
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def _prepare_cache_for_generation( |
|
|
self, |
|
|
generation_config: GenerationConfig, |
|
|
model_kwargs: dict, |
|
|
assistant_model: "PreTrainedModel", |
|
|
batch_size: int, |
|
|
max_cache_length: int, |
|
|
device: torch.device, |
|
|
) -> bool: |
|
|
assert not generation_config.return_legacy_cache, "Legacy cache is not supported for generation." |
|
|
if generation_config.use_cache is False: |
|
|
return |
|
|
model_kwargs["past_key_values"] = JetNemotronCache() |
|
|
|
|
|
def _beam_search(self, *args, **kwargs): |
|
|
raise NotImplementedError("Beam search is not supported for Jet-Nemotron models.") |
|
|
|
|
|
def _contrastive_search(self, *args, **kwargs): |
|
|
raise NotImplementedError("Contrastive search is not supported for Jet-Nemotron models.") |
|
|
|
|
|
def _group_beam_search(self, *args, **kwargs): |
|
|
raise NotImplementedError("Group beam search is not supported for Jet-Nemotron models.") |
|
|
|
|
|
def _constrained_beam_search(self, *args, **kwargs): |
|
|
raise NotImplementedError("Constrained beam search is not supported for Jet-Nemotron models.") |