File size: 9,297 Bytes
d39b279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# new_dataloader.py

import torch
import cv2
import os
import random
import pandas as pd
import albumentations
import numpy as np
from torch.utils.data import Dataset, DataLoader

# =========== TRANSFORMATION HELPERS ===========

def get_train_transforms():
    """Defines the probabilistic augmentations for training."""
    return albumentations.Compose([
        albumentations.Resize(224, 224),
        albumentations.HorizontalFlip(p=0.5),
        albumentations.ImageCompression(quality_lower=50, quality_upper=100, p=0.5),
        albumentations.GaussNoise(p=0.3),
        albumentations.GaussianBlur(blur_limit=(3, 5), p=0.3),
        albumentations.ToGray(p=0.01),
        albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
    ])

def get_val_transforms(cfg):
    """Defines augmentations for validation, handling different attack tasks from the config."""
    aug_list = [albumentations.Resize(224, 224)]
    
    task = cfg.get('task', 'normal') # Use .get for safety

    if task == 'JPEG_Compress_Attack':
        aug_list.append(albumentations.JpegCompression(quality_lower=35, quality_upper=35, p=1.0))
    elif task == 'FLIP_Attack':
        aug_list.append(albumentations.HorizontalFlip(p=0.5)) # Original had random choice, 50% HFlip is common
    elif task == 'CROP_Attack':
        aug_list.append(albumentations.RandomCrop(height=192, width=192, p=1.0))
        aug_list.append(albumentations.Resize(224, 224))
    elif task == 'Color_Attack':
        aug_list.append(albumentations.ColorJitter(p=1.0))
    elif task == 'Gaussian_Attack':
        aug_list.append(albumentations.GaussianBlur(blur_limit=(7, 7), p=1.0))

    aug_list.append(albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0))
    return albumentations.Compose(aug_list)

# =========== TRAINING DATASET ===========

class VideoDataset(Dataset):
    """
    A PyTorch Dataset for loading video frame sequences based on a DataFrame.
    Handles class balancing for each epoch.
    """
    def __init__(self, df, index_list, base_data_path, transform=None, select_frame_nums=8):
        self.df = df
        self.index_list = index_list
        self.base_data_path = base_data_path
        self.transform = transform
        self.select_frame_nums = select_frame_nums

        self.positive_indices = self.df[self.df['label'] == 1].index.tolist()
        self.negative_indices = self.df[self.df['label'] == 0].index.tolist()
        
        self.balanced_indices = []
        self.resample()

    def resample(self):
        min_samples = min(len(self.positive_indices), len(self.negative_indices))
        self.balanced_indices.clear()
        self.balanced_indices.extend(random.sample(self.positive_indices, min_samples))
        self.balanced_indices.extend(random.sample(self.negative_indices, min_samples))
        random.shuffle(self.balanced_indices)

    def __len__(self):
        return len(self.balanced_indices)

    def __getitem__(self, idx):
        real_idx = self.balanced_indices[idx]
        row = self.df.iloc[real_idx]
        
        video_id = row['content_path']
        label = int(row['label'])
        frame_list = eval(row['frame_seq'])

        frames = []
        
        if len(frame_list) >= self.select_frame_nums:
            start_index = random.randint(0, len(frame_list) - self.select_frame_nums)
            selected_frames = frame_list[start_index : start_index + self.select_frame_nums]
        else:
            selected_frames = frame_list
        
        for frame_path in selected_frames:
            try:
                image = cv2.imread(frame_path)
                if image is None:
                    raise ValueError("Failed to load")
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            except Exception:
                image = np.zeros((224, 224, 3), dtype=np.uint8)

            if self.transform:
                image = self.transform(image=image)['image']

            frames.append(image.transpose(2, 0, 1)[np.newaxis, :])


        pad_num = self.select_frame_nums - len(frames)
        if pad_num > 0:
            for _ in range(pad_num):
                frames.append(np.zeros((1, 3, 224, 224)))

        frames_tensor = np.concatenate(frames, axis=0)
        frames_tensor = torch.from_numpy(frames_tensor).float().unsqueeze(0)

        label_onehot = torch.zeros(2)
        label_onehot[label] = 1.0
        binary_label = torch.FloatTensor([label])
        
        original_index = self.index_list[idx]
        return original_index, frames_tensor, label_onehot, binary_label

# =========== VALIDATION DATASET ===========

class VideoDatasetVal(Dataset):
    """A compatible validation dataset loader."""
    def __init__(self, df, index_list, base_data_path, transform=None, select_frame_nums=8):
        self.df = df
        self.index_list = index_list
        self.base_data_path = base_data_path
        self.transform = transform
        self.select_frame_nums = select_frame_nums

    def __len__(self):
        return len(self.index_list)

    def __getitem__(self, idx):
        # Validation does not use balanced sampling, it uses the provided index directly
        real_idx = self.index_list[idx]
        row = self.df.iloc[real_idx]
        
        video_id = row['content_path']
        label = int(row['label'])
        frame_list = eval(row['frame_seq'])
        
        # This part is identical to the training dataset's __getitem__
        frames = []
        if len(frame_list) >= self.select_frame_nums:
            start_index = random.randint(0, len(frame_list) - self.select_frame_nums)
            selected_frames = frame_list[start_index : start_index + self.select_frame_nums]
        else:
            selected_frames = frame_list
        
        for frame_path in selected_frames:
            try:
                image = cv2.imread(frame_path)
                if image is None:
                    raise ValueError("Failed to load")
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            except Exception:
                image = np.zeros((224, 224, 3), dtype=np.uint8)

            if self.transform:
                image = self.transform(image=image)['image']

            frames.append(image.transpose(2, 0, 1)[np.newaxis, :])


        pad_num = self.select_frame_nums - len(frames)
        if pad_num > 0:
            for _ in range(pad_num):
                frames.append(np.zeros((1, 3, 224, 224)))

        frames_tensor = np.concatenate(frames, axis=0)
        frames_tensor = torch.from_numpy(frames_tensor).float().unsqueeze(0)

        label_onehot = torch.zeros(2)
        label_onehot[label] = 1.0
        binary_label = torch.FloatTensor([label])
        
        # The original validation loader returned video_id at the end
        return self.index_list[idx], frames_tensor, label_onehot, binary_label, video_id

# =========== DATALOADER GENERATOR FUNCTION ===========

def generate_dataset_loader(cfg):
    """
    The main function to create train and validation dataloaders using the new classes.
    """
    df_train = pd.read_csv('/home/kalpit/workspace/aigc/repos/DeMamba/csv/veo_train.csv')

    # This logic for selecting different validation sets is preserved
    task = cfg.get('task', 'normal')
    if task == 'normal':
        df_val = pd.read_csv('GenVideo/datasets/val_id.csv')
    elif task == 'robust_compress':
        df_val = pd.read_csv('GenVideo/datasets/com_28.csv')
    # ... (add other elif conditions from your original script if needed) ...
    else:
        df_val = pd.read_csv('/home/kalpit/workspace/aigc/repos/DeMamba/csv/veo_test.csv')
    
    # This logic for subsetting the training data is also preserved
    if cfg.get('train_sub_set'):
        prefixes = [f"fake/{cfg['train_sub_set']}", "real"]
        condition = df_train['content_path'].str.startswith(tuple(prefixes))
        df_train = df_train[condition]

    df_train.reset_index(drop=True, inplace=True)
    df_val.reset_index(drop=True, inplace=True)
    
    index_train = df_train.index.tolist()
    index_val = df_val.index.tolist()

    # --- Use the new VideoDataset classes ---
    base_data_path = 'GenVideo'
    
    train_dataset = VideoDataset(
        df=df_train,
        index_list=index_train,
        base_data_path=base_data_path,
        transform=get_train_transforms(),
        select_frame_nums=8
    )
    
    val_dataset = VideoDatasetVal(
        df=df_val,
        index_list=index_val,
        base_data_path=base_data_path,
        transform=get_val_transforms(cfg),
        select_frame_nums=8
    )

    train_loader = DataLoader(
        train_dataset, batch_size=cfg['train_batch_size'], shuffle=True, 
        num_workers=cfg['num_workers'], pin_memory=True, drop_last=True
    )

    val_loader = DataLoader(
        val_dataset, batch_size=cfg['val_batch_size'], shuffle=False, 
        num_workers=cfg['num_workers'], pin_memory=True, drop_last=False
    )
    
    print(f"******* Training Videos {len(index_train)}, Batch size {cfg['train_batch_size']} *******")
    print(f"******* Testing Videos {len(index_val)}, Batch size {cfg['val_batch_size']} *******")

    return train_loader, val_loader