File size: 25,408 Bytes
d39b279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
'''
STIL: Spatiotemporal inconsistency learning for deepfake video detection @ ACM MM'2021
Copyright (c) Tencent Youtu Lab and its affiliates.
Modified by Zhiyuan Yan from https://github.com/Tencent/TFace?tab=readme-ov-file
'''
import os
import datetime
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.model_zoo as model_zoo
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
class ISM_Module(nn.Module):
def __init__(self, k_size=3):
"""The Information Supplement Module (ISM).
Args:
k_size (int, optional): Conv1d kernel_size . Defaults to 3.
"""
super(ISM_Module, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size-1)//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
Args:
x (torch.tensor): Input tensor of shape (nt, c, h, w)
"""
y = self.avg_pool(x)
y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)
y = self.sigmoid(y)
return x * y.expand_as(x)
class TIM_Module(nn.Module):
def __init__(self, in_channels, reduction=16, n_segment=8, return_attn=False):
"""The Temporal Inconsistency Module (TIM).
Args:
in_channels (int): Input channel number.
reduction (int, optional): Channel compression ratio r in the split operation.. Defaults to 16.
n_segment (int, optional): Number of input frames.. Defaults to 8.
return_attn (bool, optional): Whether to return the attention part. Defaults to False.
"""
super(TIM_Module, self).__init__()
self.in_channels = in_channels
self.reduction = reduction
self.n_segment = n_segment
self.return_attn = return_attn
self.reduced_channels = self.in_channels // self.reduction
# first conv to shrink input channels
self.conv1 = nn.Conv2d(self.in_channels, self.reduced_channels, kernel_size=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(self.reduced_channels)
self.conv_ht = nn.Conv2d(self.reduced_channels, self.reduced_channels,
kernel_size=(3, 1), padding=(1, 0), groups=self.reduced_channels, bias=False)
self.conv_tw = nn.Conv2d(self.reduced_channels, self.reduced_channels,
kernel_size=(1, 3), padding=(0, 1), groups=self.reduced_channels, bias=False)
self.avg_pool_ht = nn.AvgPool2d((2, 1), (2, 1))
self.avg_pool_tw = nn.AvgPool2d((1, 2), (1, 2))
# HTIE in two directions
self.htie_conv1 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(3, 1), padding=(1, 0), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.vtie_conv1 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(1, 3), padding=(0, 1), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.htie_conv2 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(3, 1), padding=(1, 0), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.vtie_conv2 = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.reduced_channels, kernel_size=(1, 3), padding=(0, 1), bias=False),
nn.BatchNorm2d(self.reduced_channels),
)
self.ht_up_conv = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.in_channels)
)
self.tw_up_conv = nn.Sequential(
nn.Conv2d(self.reduced_channels, self.in_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.in_channels)
)
self.sigmoid = nn.Sigmoid()
def feat_ht(self, feat):
"""The H-T branch in the TIM module.
Args:
feat (torch.tensor): Input feature with shape [n, t, c, h, w] (c is in_channels // reduction)
"""
n, t, c, h, w = feat.size()
# [n, t, c, h, w] -> [n, w, c, h, t] -> [nw, c, h, t]
feat_h = feat.permute(0, 4, 2, 3, 1).contiguous().view(-1, c, h, t)
# [nw, c, h, t-1]
feat_h_fwd, _ = feat_h.split([self.n_segment-1, 1], dim=3)
feat_h_conv = self.conv_ht(feat_h)
_, feat_h_conv_fwd = feat_h_conv.split([1, self.n_segment-1], dim=3)
diff_feat_fwd = feat_h_conv_fwd - feat_h_fwd
diff_feat_fwd = F.pad(diff_feat_fwd, [0, 1], value=0) # [nw, c, h, t]
# HTIE, down_up branch
diff_feat_fwd1 = self.avg_pool_ht(diff_feat_fwd) # [nw, c, h//2, t]
diff_feat_fwd1 = self.htie_conv1(diff_feat_fwd1) # [nw, c, h//2, t]
diff_feat_fwd1 = F.interpolate(diff_feat_fwd1, diff_feat_fwd.size()[2:]) # [nw, c, h, t]
# HTIE, direct conv branch
diff_feat_fwd2 = self.htie_conv2(diff_feat_fwd) # [nw, c, h, t]
# [nw, C, h, t]
feat_ht_out = self.ht_up_conv(1/3. * diff_feat_fwd + 1/3. * diff_feat_fwd1 + 1/3. * diff_feat_fwd2)
feat_ht_out = self.sigmoid(feat_ht_out) - 0.5
# [nw, C, h, t] -> [n, w, C, h, t] -> [n, t, C, h, w]
feat_ht_out = feat_ht_out.view(n, w, self.in_channels, h, t).permute(0, 4, 2, 3, 1).contiguous()
# [n, t, C, h, w] -> [nt, C, h, w]
feat_ht_out = feat_ht_out.view(-1, self.in_channels, h, w)
return feat_ht_out
def feat_tw(self, feat):
"""The T-W branch in the TIM module.
Args:
feat (torch.tensor): Input feature with shape [n, t, c, h, w] (c is in_channels // reduction)
"""
n, t, c, h, w = feat.size()
# [n, t, c, h, w] -> [n, h, c, t, w] -> [nh, c, t, w]
feat_w = feat.permute(0, 3, 2, 1, 4).contiguous().view(-1, c, t, w)
# [nh, c, t-1, w]
feat_w_fwd, _ = feat_w.split([self.n_segment-1, 1], dim=2)
feat_w_conv = self.conv_tw(feat_w)
_, feat_w_conv_fwd = feat_w_conv.split([1, self.n_segment-1], dim=2)
diff_feat_fwd = feat_w_conv_fwd - feat_w_fwd
diff_feat_fwd = F.pad(diff_feat_fwd, [0, 0, 0, 1], value=0) # [nh, c, t, w]
# VTIE, down_up branch
diff_feat_fwd1 = self.avg_pool_tw(diff_feat_fwd) # [nh, c, t, w//2]
diff_feat_fwd1 = self.vtie_conv1(diff_feat_fwd1) # [nh, c, t, w//2]
diff_feat_fwd1 = F.interpolate(diff_feat_fwd1, diff_feat_fwd.size()[2:]) # [nh, c, t, w]
# VTIE, direct conv branch
diff_feat_fwd2 = self.vtie_conv2(diff_feat_fwd) # [nh, c, t, w]
# [nh, C, t, w]
feat_tw_out = self.tw_up_conv(1/3. * diff_feat_fwd + 1/3. * diff_feat_fwd1 + 1/3. * diff_feat_fwd2)
feat_tw_out = self.sigmoid(feat_tw_out) - 0.5
# [nh, C, t, w] -> [n, h, C, t, w] -> [n, t, C, h, W]
feat_tw_out = feat_tw_out.view(n, h, self.in_channels, t, w).permute(0, 3, 2, 1, 4).contiguous()
# [n, t, C, h, w] -> [nt, C, h, w]
feat_tw_out = feat_tw_out.view(-1, self.in_channels, h, w)
return feat_tw_out
def forward(self, x):
"""
Args:
x (torch.tensor): Input with shape [nt, c, h, w]
"""
# [nt, c, h, w] -> [nt, c//r, h, w]
bottleneck = self.conv1(x)
bottleneck = self.bn1(bottleneck)
# [nt, c//r, h, w] -> [n, t, c//r, h, w]
bottleneck = bottleneck.view((-1, self.n_segment) + bottleneck.size()[1:])
F_h = self.feat_ht(bottleneck) # [nt, c, h, w]
F_w = self.feat_tw(bottleneck) # [nt, c, h, w]
att = 0.5 * (F_h + F_w)
if self.return_attn:
return att
y2 = x + x * att
return y2
class ShiftModule(nn.Module):
def __init__(self, input_channels, n_segment=8, n_div=8, mode='shift'):
"""A depth-wise conv on the segment level.
Args:
input_channels (int): Input channel number.
n_segment (int, optional): Number of input frames.. Defaults to 8.
n_div (int, optional): How many channels to group as a fold.. Defaults to 8.
mode (str, optional): One of "shift", "fixed", "norm". Defaults to 'shift'.
"""
super(ShiftModule, self).__init__()
self.input_channels = input_channels
self.n_segment = n_segment
self.fold_div = n_div
self.fold = self.input_channels // self.fold_div
self.conv = nn.Conv1d(self.fold_div*self.fold, self.fold_div*self.fold,
kernel_size=3, padding=1, groups=self.fold_div*self.fold,
bias=False)
if mode == 'shift':
self.conv.weight.requires_grad = True
self.conv.weight.data.zero_()
# shift left
self.conv.weight.data[:self.fold, 0, 2] = 1
# shift right
self.conv.weight.data[self.fold: 2 * self.fold, 0, 0] = 1
if 2*self.fold < self.input_channels:
self.conv.weight.data[2 * self.fold:, 0, 1] = 1 # fixed
elif mode == 'fixed':
self.conv.weight.requires_grad = True
self.conv.weight.data.zero_()
self.conv.weight.data[:, 0, 1] = 1 # fixed
elif mode == 'norm':
self.conv.weight.requires_grad = True
def forward(self, x):
"""
Args:
x (torch.tensor): Input with shape [nt, c, h, w]
"""
nt, c, h, w = x.size()
n_batch = nt // self.n_segment
x = x.view(n_batch, self.n_segment, c, h, w)
# (n, h, w, c, t)
x = x.permute(0, 3, 4, 2, 1)
x = x.contiguous().view(n_batch*h*w, c, self.n_segment)
# (n*h*w, c, t)
x = self.conv(x)
x = x.view(n_batch, h, w, c, self.n_segment)
# (n, t, c, h, w)
x = x.permute(0, 4, 3, 1, 2)
x = x.contiguous().view(nt, c, h, w)
return x
class SCConv(nn.Module):
"""
The spatial conv in SIM. Used in SCBottleneck
"""
def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):
super(SCConv, self).__init__()
self.f_w = nn.Sequential(
nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),
nn.Conv2d(inplanes, planes, kernel_size=(1,3), stride=1,
padding=(0,padding), dilation=(1,dilation),
groups=groups, bias=False),
norm_layer(planes), nn.ReLU(inplace=True))
self.f_h = nn.Sequential(
# nn.AvgPool2d(kernel_size=(pooling_r,1), stride=(pooling_r,1)),
nn.Conv2d(inplanes, planes, kernel_size=(3,1), stride=1,
padding=(padding,0), dilation=(dilation,1),
groups=groups, bias=False),
norm_layer(planes),
)
self.k3 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,
padding=padding, dilation=dilation,
groups=groups, bias=False),
norm_layer(planes),
)
self.k4 = nn.Sequential(
nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
padding=padding, dilation=dilation,
groups=groups, bias=False),
norm_layer(planes),
)
def forward(self, x):
identity = x
# sigmoid(identity + k2)
out = torch.sigmoid(
torch.add(
identity,
F.interpolate(self.f_h(self.f_w(x)), identity.size()[2:])
)
)
out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)
s2t_info = out
out = self.k4(out) # k4
return out, s2t_info
class SCBottleneck(nn.Module):
"""
SCNet SCBottleneck. Variant for ResNet Bottlenect.
"""
expansion = 4
pooling_r = 4 # down-sampling rate of the avg pooling layer in the K3 path of SC-Conv.
def __init__(self, num_segments, inplanes, planes, stride=1, downsample=None,
cardinality=1, bottleneck_width=32,
avd=False, dilation=1, is_first=False,
norm_layer=None):
super(SCBottleneck, self).__init__()
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1_a = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1_a = norm_layer(group_width)
self.conv1_b = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1_b = norm_layer(group_width)
self.avd = avd and (stride > 1 or is_first)
self.tim = TIM_Module(group_width, n_segment=num_segments)
self.shift = ShiftModule(group_width, n_segment=num_segments, n_div=8, mode='shift')
self.inplanes = inplanes
self.planes = planes
self.ism = ISM_Module()
self.shift = ShiftModule(group_width, n_segment=num_segments, n_div=8, mode='shift')
if self.avd:
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
stride = 1
self.k1 = nn.Sequential(
nn.Conv2d(
group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, bias=False),
norm_layer(group_width),
)
self.scconv = SCConv(
group_width, group_width, stride=stride,
padding=dilation, dilation=dilation,
groups=cardinality, pooling_r=self.pooling_r, norm_layer=norm_layer)
self.conv3 = nn.Conv2d(
group_width * 2, planes * 4, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes*4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
def forward(self, x):
"""Forward func which splits the input into two branchs a and b.
a: trace features
b: spatial features
"""
residual = x
out_a = self.relu(self.bn1_a(self.conv1_a(x)))
out_b = self.relu(self.bn1_b(self.conv1_b(x)))
# spatial representations
out_b, s2t_info = self.scconv(out_b)
out_b = self.relu(out_b)
# trace features
out_a = self.tim(out_a)
out_a = self.shift(out_a + self.ism(s2t_info))
out_a = self.relu(self.k1(out_a))
if self.avd:
out_a = self.avd_layer(out_a)
out_b = self.avd_layer(out_b)
out = self.conv3(torch.cat([out_a, out_b], dim=1))
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class SCNet(nn.Module):
def __init__(self, num_segments, block, layers, groups=1, bottleneck_width=32,
num_classes=1000, dilated=False, dilation=1,
deep_stem=False, stem_width=64, avg_down=False,
avd=False, norm_layer=nn.BatchNorm2d):
"""SCNet, a variant based on ResNet.
Args:
num_segments (int):
Number of input frames.
block (class):
Class for the residual block.
layers (list):
Number of layers in each block.
num_classes (int, optional):
Number of classification class.. Defaults to 1000.
dilated (bool, optional):
Whether to apply dilation conv. Defaults to False.
dilation (int, optional):
The dilation parameter in dilation conv. Defaults to 1.
deep_stem (bool, optional):
Whether to replace 7x7 conv in input stem with 3 3x3 conv. Defaults to False.
stem_width (int, optional):
Stem width in conv1 stem. Defaults to 64.
avg_down (bool, optional):
Whether to use AvgPool instead of stride conv when downsampling in the bottleneck. Defaults to False.
avd (bool, optional):
The avd parameter for the block Defaults to False.
norm_layer (class, optional):
Normalization layer. Defaults to nn.BatchNorm2d.
"""
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width*2 if deep_stem else 64
self.avg_down = avg_down
self.avd = avd
self.num_segments = num_segments
super(SCNet, self).__init__()
conv_layer = nn.Conv2d
if deep_stem:
self.conv1 = nn.Sequential(
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False),
norm_layer(stem_width),
nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False),
)
else:
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
if dilated or dilation == 4:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilation=2, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=4, norm_layer=norm_layer)
elif dilation==2:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilation=1, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=2, norm_layer=norm_layer)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
norm_layer=norm_layer)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
norm_layer=norm_layer)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, norm_layer):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
is_first=True):
"""
Core function to build layers.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
down_layers = []
if self.avg_down:
if dilation == 1:
down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True, count_include_pad=False))
else:
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1,
ceil_mode=True, count_include_pad=False))
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False))
else:
down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False))
down_layers.append(norm_layer(planes * block.expansion))
downsample = nn.Sequential(*down_layers)
layers = []
if dilation == 1 or dilation == 2:
layers.append(block(self.num_segments, self.inplanes, planes, stride, downsample=downsample,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=1, is_first=is_first,
norm_layer=norm_layer))
elif dilation == 4:
layers.append(block(self.num_segments, self.inplanes, planes, stride, downsample=downsample,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=2, is_first=is_first,
norm_layer=norm_layer))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.num_segments, self.inplanes, planes,
cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
avd=self.avd, dilation=dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def features(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def logits(self, features):
x = self.avgpool(features)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
return x
def scnet50_v1d(num_segments, pretrained=False, **kwargs):
"""
SCNet backbone, which is based on ResNet-50
Args:
num_segments (int):
Number of input frames.
pretrained (bool, optional):
Whether to load pretrained weights.
"""
model = SCNet(num_segments, SCBottleneck, [3, 4, 6, 3],
deep_stem=True, stem_width=32, avg_down=True,
avd=True, **kwargs)
if pretrained:
model_state = torch.load('/ossfs/workspace/GenVideo/pretrained_weights/scnet50_v1d-4109d1e1.pth')
model.load_state_dict(model_state, strict=False)
return model
class STIL_Model(nn.Module):
def __init__(self,
num_class=1,
num_segment=8,
add_softmax=False,
**kwargs):
""" Model Builder for STIL model.
STIL: Spatiotemporal Inconsistency Learning for DeepFake Video Detection (https://arxiv.org/abs/2109.01860)
Args:
num_class (int, optional): Number of classes. Defaults to 2.
num_segment (int, optional): Number of segments (frames) fed to the model. Defaults to 8.
add_softmax (bool, optional): Whether to add softmax layer at the end. Defaults to False.
"""
super().__init__()
self.num_class = num_class
self.num_segment = num_segment
self.build_model()
def build_model(self):
self.base_model = scnet50_v1d(self.num_segment, pretrained=True)
fc_feature_dim = self.base_model.fc.in_features
self.base_model.fc = nn.Linear(fc_feature_dim, self.num_class)
def forward(self, x):
"""Forward pass of the model.
Args:
x (torch.tensor): input tensor of shape (n, t*c, h, w). n is the batch_size, t is num_segment
"""
# img channel default to 3
img_channel = 3
# x: [n, tc, h, w] -> [nt, c, h, w]
# out: [nt, num_class]
out = self.base_model(
x.view((-1, img_channel) + x.size()[2:])
)
out = out.view(-1, self.num_segment, self.num_class) # [n, t, num_class]
out = out.mean(1, keepdim=False) # [n, num_class]
return out
def set_segment(self, num_segment):
"""Change num_segment of the model.
Useful when the train and test want to feed different number of frames.
Args:
num_segment (int): New number of segments.
"""
self.num_segment = num_segment
class Det_STIL(nn.Module):
def __init__(self):
super(Det_STIL, self).__init__()
self.model = STIL_Model()
def forward(self, x):
b, t, _, h, w = x.shape
images = x.view(b, t*3, h, w)
x = self.model(images)
return x
|