|
|
""" |
|
|
NPR: Rethinking the Up-Sampling Operations in CNN-based Generative Network for Generalizable Deepfake Detection@CVPR'2024 |
|
|
Copyright (c) Beijing Jiaotong University and its affiliates. |
|
|
Modified by Chuangchuang Tan from https://github.com/chuangchuangtan/NPR-DeepfakeDetection |
|
|
""" |
|
|
|
|
|
import torch.nn as nn |
|
|
import torch |
|
|
import torch.utils.model_zoo as model_zoo |
|
|
from torch.nn import functional as F |
|
|
from typing import Any, cast, Dict, List, Optional, Union |
|
|
import numpy as np |
|
|
|
|
|
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', |
|
|
'resnet152'] |
|
|
|
|
|
|
|
|
model_urls = { |
|
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
|
} |
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
|
"""3x3 convolution with padding""" |
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
|
padding=1, bias=False) |
|
|
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
|
"""1x1 convolution""" |
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
expansion = 1 |
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
super(BasicBlock, self).__init__() |
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.conv2 = conv3x3(planes, planes) |
|
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
self.downsample = downsample |
|
|
self.stride = stride |
|
|
|
|
|
def forward(self, x): |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
identity = self.downsample(x) |
|
|
|
|
|
out += identity |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
expansion = 4 |
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
|
super(Bottleneck, self).__init__() |
|
|
self.conv1 = conv1x1(inplanes, planes) |
|
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
self.conv2 = conv3x3(planes, planes, stride) |
|
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
self.conv3 = conv1x1(planes, planes * self.expansion) |
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.downsample = downsample |
|
|
self.stride = stride |
|
|
|
|
|
def forward(self, x): |
|
|
identity = x |
|
|
|
|
|
out = self.conv1(x) |
|
|
out = self.bn1(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv2(out) |
|
|
out = self.bn2(out) |
|
|
out = self.relu(out) |
|
|
|
|
|
out = self.conv3(out) |
|
|
out = self.bn3(out) |
|
|
|
|
|
if self.downsample is not None: |
|
|
identity = self.downsample(x) |
|
|
|
|
|
out += identity |
|
|
out = self.relu(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
|
|
def __init__(self, block, layers, num_classes=1, zero_init_residual=False): |
|
|
super(ResNet, self).__init__() |
|
|
|
|
|
self.unfoldSize = 2 |
|
|
self.unfoldIndex = 0 |
|
|
assert self.unfoldSize > 1 |
|
|
assert -1 < self.unfoldIndex and self.unfoldIndex < self.unfoldSize*self.unfoldSize |
|
|
self.inplanes = 64 |
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) |
|
|
self.bn1 = nn.BatchNorm2d(64) |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
self.layer1 = self._make_layer(block, 64 , layers[0]) |
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
|
|
self.fc1 = nn.Linear(512, num_classes) |
|
|
|
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv2d): |
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
elif isinstance(m, nn.BatchNorm2d): |
|
|
nn.init.constant_(m.weight, 1) |
|
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
|
for m in self.modules(): |
|
|
if isinstance(m, Bottleneck): |
|
|
nn.init.constant_(m.bn3.weight, 0) |
|
|
elif isinstance(m, BasicBlock): |
|
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
|
downsample = None |
|
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
|
downsample = nn.Sequential( |
|
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
|
nn.BatchNorm2d(planes * block.expansion), |
|
|
) |
|
|
|
|
|
layers = [] |
|
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
|
self.inplanes = planes * block.expansion |
|
|
for _ in range(1, blocks): |
|
|
layers.append(block(self.inplanes, planes)) |
|
|
|
|
|
return nn.Sequential(*layers) |
|
|
def interpolate(self, img, factor): |
|
|
return F.interpolate(F.interpolate(img, scale_factor=factor, mode='nearest', recompute_scale_factor=True), scale_factor=1/factor, mode='nearest', recompute_scale_factor=True) |
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b, t, _, h, w = x.shape |
|
|
x = x.view(b * t, 3, h, w) |
|
|
|
|
|
|
|
|
NPR = x - self.interpolate(x, 0.5) |
|
|
|
|
|
x = self.conv1(NPR*2.0/3.0) |
|
|
x = self.bn1(x) |
|
|
x = self.relu(x) |
|
|
x = self.maxpool(x) |
|
|
|
|
|
x = self.layer1(x) |
|
|
x = self.layer2(x) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
x = x.view(x.size(0), -1) |
|
|
x = self.fc1(x) |
|
|
x = x.view(b, t, -1) |
|
|
x = x.mean(1) |
|
|
|
|
|
return x |
|
|
|
|
|
def infer(self, x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b, t, _, h, w = x.shape |
|
|
x = x.view(b * t, 3, h, w) |
|
|
|
|
|
|
|
|
NPR = x - self.interpolate(x, 0.5) |
|
|
|
|
|
x = self.conv1(NPR*2.0/3.0) |
|
|
x = self.bn1(x) |
|
|
x = self.relu(x) |
|
|
x = self.maxpool(x) |
|
|
|
|
|
x = self.layer1(x) |
|
|
x = self.layer2(x) |
|
|
|
|
|
x = self.avgpool(x) |
|
|
x = x.view(x.size(0), -1) |
|
|
x = self.fc1(x) |
|
|
x = x.view(b, t, -1) |
|
|
x = x.mean(1) |
|
|
return x |
|
|
|
|
|
|
|
|
def resnet18_npr(pretrained=False, **kwargs): |
|
|
"""Constructs a ResNet-18 model. |
|
|
Args: |
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
""" |
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) |
|
|
if pretrained: |
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) |
|
|
return model |
|
|
|
|
|
|
|
|
def resnet34_npr(pretrained=False, **kwargs): |
|
|
"""Constructs a ResNet-34 model. |
|
|
Args: |
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
""" |
|
|
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) |
|
|
if pretrained: |
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) |
|
|
return model |
|
|
|
|
|
|
|
|
def resnet50_npr(pretrained=False, **kwargs): |
|
|
"""Constructs a ResNet-50 model. |
|
|
Args: |
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
""" |
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) |
|
|
if pretrained: |
|
|
model_state = torch.load('/ossfs/workspace/aigc_video/weights/resnet50-19c8e357.pth') |
|
|
model.load_state_dict(model_state, strict=False) |
|
|
return model |
|
|
|
|
|
|
|
|
def resnet101_npr(pretrained=False, **kwargs): |
|
|
"""Constructs a ResNet-101 model. |
|
|
Args: |
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
""" |
|
|
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) |
|
|
if pretrained: |
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) |
|
|
return model |
|
|
|
|
|
|
|
|
def resnet152_npr(pretrained=False, **kwargs): |
|
|
"""Constructs a ResNet-152 model. |
|
|
Args: |
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
""" |
|
|
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) |
|
|
if pretrained: |
|
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|