|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.utils.checkpoint as checkpoint |
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
|
from timm.models.registry import register_model |
|
|
from torch.hub import load_state_dict_from_url |
|
|
import logging |
|
|
from einops import rearrange |
|
|
import math |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
|
return { |
|
|
'url': url, |
|
|
'num_classes': 1, 'input_size': (3, 224, 224), 'pool_size': None, |
|
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
|
**kwargs |
|
|
} |
|
|
|
|
|
|
|
|
default_cfgs = { |
|
|
|
|
|
'swin_base_in1k_patch4_224': _cfg( |
|
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth', |
|
|
), |
|
|
'swin_base_patch4_window7_224_22k': _cfg( |
|
|
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', |
|
|
) |
|
|
} |
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def window_partition(x, window_size): |
|
|
""" |
|
|
Args: |
|
|
x: (B, H, W, C) |
|
|
window_size (int): window size |
|
|
|
|
|
Returns: |
|
|
windows: (num_windows*B, window_size, window_size, C) |
|
|
""" |
|
|
B, H, W, C = x.shape |
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
|
return windows |
|
|
|
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
|
""" |
|
|
Args: |
|
|
windows: (num_windows*B, window_size, window_size, C) |
|
|
window_size (int): Window size |
|
|
H (int): Height of image |
|
|
W (int): Width of image |
|
|
|
|
|
Returns: |
|
|
x: (B, H, W, C) |
|
|
""" |
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
|
return x |
|
|
|
|
|
|
|
|
def create_new_image_size(img_size, thumbnail_dim, window_size): |
|
|
h, w = img_size * thumbnail_dim[0], img_size * thumbnail_dim[1] |
|
|
new_h, new_w = h, w |
|
|
dim = 32 * window_size |
|
|
if h % (32 * window_size) != 0: |
|
|
new_h = (h // dim + 1) * dim |
|
|
if w % (32 * window_size) != 0: |
|
|
new_w = (w // dim + 1) * dim |
|
|
|
|
|
return (new_h//thumbnail_dim[0], new_w//thumbnail_dim[1]) |
|
|
|
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
|
It supports both of shifted and non-shifted window. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
window_size (tuple[int]): The height and width of the window. |
|
|
num_heads (int): Number of attention heads. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
|
""" |
|
|
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
|
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
|
coords_w = torch.arange(self.window_size[1]) |
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_flatten = torch.flatten(coords, 1) |
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
""" |
|
|
Args: |
|
|
x: input features with shape of (num_windows*B, N, C) |
|
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
|
""" |
|
|
B_, N, C = x.shape |
|
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
q = q * self.scale |
|
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
|
|
if mask is not None: |
|
|
nW = mask.shape[0] |
|
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
attn = self.softmax(attn) |
|
|
else: |
|
|
attn = self.softmax(attn) |
|
|
|
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
def extra_repr(self) -> str: |
|
|
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' |
|
|
|
|
|
def flops(self, N): |
|
|
|
|
|
flops = 0 |
|
|
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
|
|
flops += N * self.dim * self.dim |
|
|
return flops |
|
|
|
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
|
r""" Swin Transformer Block. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
input_resolution (tuple[int]): Input resulotion. |
|
|
num_heads (int): Number of attention heads. |
|
|
window_size (int): Window size. |
|
|
shift_size (int): Shift size for SW-MSA. |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
""" |
|
|
|
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, |
|
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, bottleneck=False, use_checkpoint=False): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.num_heads = num_heads |
|
|
self.window_size = window_size |
|
|
self.shift_size = shift_size |
|
|
self.mlp_ratio = mlp_ratio |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
|
|
self.shift_size = 0 |
|
|
self.window_size = min(self.input_resolution) |
|
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = WindowAttention( |
|
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
if self.shift_size > 0: |
|
|
|
|
|
H, W = self.input_resolution |
|
|
img_mask = torch.zeros((1, H, W, 1)) |
|
|
h_slices = (slice(0, -self.window_size), |
|
|
slice(-self.window_size, -self.shift_size), |
|
|
slice(-self.shift_size, None)) |
|
|
w_slices = (slice(0, -self.window_size), |
|
|
slice(-self.window_size, -self.shift_size), |
|
|
slice(-self.shift_size, None)) |
|
|
cnt = 0 |
|
|
for h in h_slices: |
|
|
for w in w_slices: |
|
|
img_mask[:, h, w, :] = cnt |
|
|
cnt += 1 |
|
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
else: |
|
|
attn_mask = None |
|
|
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
|
|
def forward_attn(self, x): |
|
|
H, W = self.input_resolution |
|
|
B, L, C = x.shape |
|
|
assert L == H * W, "input feature has wrong size" |
|
|
|
|
|
x = self.norm1(x) |
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
shifted_x = x |
|
|
|
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=self.attn_mask) |
|
|
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) |
|
|
|
|
|
|
|
|
if self.shift_size > 0: |
|
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
x = shifted_x |
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
return x |
|
|
|
|
|
def forward_mlp(self, x): |
|
|
return self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
|
|
def forward(self, x): |
|
|
shortcut = x |
|
|
if self.use_checkpoint: |
|
|
x = checkpoint.checkpoint(self.forward_attn, x) |
|
|
else: |
|
|
x = self.forward_attn(x) |
|
|
x = shortcut + self.drop_path(x) |
|
|
|
|
|
if self.use_checkpoint: |
|
|
x = x + checkpoint.checkpoint(self.forward_mlp, x) |
|
|
else: |
|
|
x = x + self.forward_mlp(x) |
|
|
|
|
|
return x |
|
|
|
|
|
def extra_repr(self) -> str: |
|
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" |
|
|
|
|
|
def flops(self): |
|
|
flops = 0 |
|
|
H, W = self.input_resolution |
|
|
|
|
|
flops += self.dim * H * W |
|
|
|
|
|
nW = H * W / self.window_size / self.window_size |
|
|
flops += nW * self.attn.flops(self.window_size * self.window_size) |
|
|
|
|
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
|
|
|
|
flops += self.dim * H * W |
|
|
return flops |
|
|
|
|
|
|
|
|
class PatchMerging(nn.Module): |
|
|
r""" Patch Merging Layer. |
|
|
|
|
|
Args: |
|
|
input_resolution (tuple[int]): Resolution of input feature. |
|
|
dim (int): Number of input channels. |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
""" |
|
|
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.input_resolution = input_resolution |
|
|
self.dim = dim |
|
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
|
self.norm = norm_layer(4 * dim) |
|
|
|
|
|
def forward(self, x): |
|
|
""" |
|
|
x: B, H*W, C |
|
|
""" |
|
|
H, W = self.input_resolution |
|
|
B, L, C = x.shape |
|
|
assert L == H * W, "input feature has wrong size" |
|
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
|
x1 = x[:, 1::2, 0::2, :] |
|
|
x2 = x[:, 0::2, 1::2, :] |
|
|
x3 = x[:, 1::2, 1::2, :] |
|
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
|
x = x.view(B, -1, 4 * C) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.reduction(x) |
|
|
|
|
|
return x |
|
|
|
|
|
def extra_repr(self) -> str: |
|
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
|
|
def flops(self): |
|
|
H, W = self.input_resolution |
|
|
flops = H * W * self.dim |
|
|
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim |
|
|
return flops |
|
|
|
|
|
|
|
|
class BasicLayer(nn.Module): |
|
|
""" A basic Swin Transformer layer for one stage. |
|
|
|
|
|
Args: |
|
|
dim (int): Number of input channels. |
|
|
input_resolution (tuple[int]): Input resolution. |
|
|
depth (int): Number of blocks. |
|
|
num_heads (int): Number of attention heads. |
|
|
window_size (int): Local window size. |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
|
""" |
|
|
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, |
|
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, |
|
|
bottleneck=False): |
|
|
|
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.depth = depth |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
|
SwinTransformerBlock(dim=dim, input_resolution=input_resolution, |
|
|
num_heads=num_heads, window_size=window_size, |
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
|
mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
drop=drop, attn_drop=attn_drop, |
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
|
norm_layer=norm_layer, |
|
|
bottleneck=bottleneck if i == depth-1 else False, |
|
|
use_checkpoint=use_checkpoint) |
|
|
for i in range(depth)]) |
|
|
|
|
|
|
|
|
if downsample is not None: |
|
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
|
else: |
|
|
self.downsample = None |
|
|
|
|
|
def forward(self, x): |
|
|
for blk in self.blocks: |
|
|
if self.use_checkpoint: |
|
|
x = checkpoint.checkpoint(blk, x) |
|
|
else: |
|
|
x = blk(x) |
|
|
if self.downsample is not None: |
|
|
x = self.downsample(x) |
|
|
return x |
|
|
|
|
|
def extra_repr(self) -> str: |
|
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
|
|
def flops(self): |
|
|
flops = 0 |
|
|
for blk in self.blocks: |
|
|
flops += blk.flops() |
|
|
if self.downsample is not None: |
|
|
flops += self.downsample.flops() |
|
|
return flops |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
r""" Image to Patch Embedding |
|
|
|
|
|
Args: |
|
|
img_size (int): Image size. Default: 224. |
|
|
patch_size (int): Patch token size. Default: 4. |
|
|
in_chans (int): Number of input image channels. Default: 3. |
|
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
|
""" |
|
|
|
|
|
def __init__(self, img_size=(224,224), patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
|
|
|
patch_size = to_2tuple(patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
if norm_layer is not None: |
|
|
self.norm = norm_layer(embed_dim) |
|
|
else: |
|
|
self.norm = None |
|
|
|
|
|
def forward(self, x): |
|
|
B, C, H, W = x.shape |
|
|
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
|
if self.norm is not None: |
|
|
x = self.norm(x) |
|
|
return x |
|
|
|
|
|
def flops(self): |
|
|
Ho, Wo = self.patches_resolution |
|
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) |
|
|
if self.norm is not None: |
|
|
flops += Ho * Wo * self.embed_dim |
|
|
return flops |
|
|
|
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
|
r""" Swin Transformer |
|
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
|
https://arxiv.org/pdf/2103.14030 |
|
|
Args: |
|
|
img_size (int | tuple(int)): Input image size. Default 224 |
|
|
patch_size (int | tuple(int)): Patch size. Default: 4 |
|
|
in_chans (int): Number of input image channels. Default: 3 |
|
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
|
depths (tuple(int)): Depth of each Swin Transformer layer. |
|
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
|
window_size (int): Window size. Default: 7 |
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None |
|
|
drop_rate (float): Dropout rate. Default: 0 |
|
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
|
""" |
|
|
|
|
|
def __init__(self, duration=8, img_size=224, patch_size=4, in_chans=3, num_classes=1000, |
|
|
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], |
|
|
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, |
|
|
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, |
|
|
use_checkpoint=False, thumbnail_rows=1, bottleneck=False, **kwargs): |
|
|
super().__init__() |
|
|
|
|
|
self.duration = duration |
|
|
self.num_classes = num_classes |
|
|
self.num_layers = len(depths) |
|
|
self.embed_dim = embed_dim |
|
|
self.ape = ape |
|
|
self.patch_norm = patch_norm |
|
|
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) |
|
|
self.mlp_ratio = mlp_ratio |
|
|
self.thumbnail_rows = thumbnail_rows |
|
|
|
|
|
self.img_size = img_size |
|
|
self.window_size = [window_size for _ in depths] if not isinstance(window_size, list) else window_size |
|
|
self.image_mode = True |
|
|
|
|
|
self.frame_padding = self.duration % thumbnail_rows if self.image_mode is True else 0 |
|
|
if self.frame_padding != 0: |
|
|
self.frame_padding = self.thumbnail_rows - self.frame_padding |
|
|
self.duration += self.frame_padding |
|
|
|
|
|
|
|
|
if self.image_mode: |
|
|
thumbnail_dim = (thumbnail_rows, self.duration // thumbnail_rows) |
|
|
thumbnail_size = (img_size * thumbnail_dim[0], img_size * thumbnail_dim[1]) |
|
|
else: |
|
|
thumbnail_size = (img_size, img_size) |
|
|
|
|
|
print ('---------------------------------------') |
|
|
print ('duration:', self.duration, 'frame padding:', self.frame_padding, 'image_size:', self.img_size, 'patch_size:', patch_size, 'thumbnail_size:', (thumbnail_rows, self.duration//thumbnail_rows), 'ape:', self.ape) |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=(img_size, img_size), patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
num_patches = self.patch_embed.num_patches |
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
|
|
|
if self.ape: |
|
|
|
|
|
|
|
|
self.frame_pos_embed = nn.Parameter(torch.zeros(1, self.duration, embed_dim)) |
|
|
trunc_normal_(self.frame_pos_embed, std=.02) |
|
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for i_layer in range(self.num_layers): |
|
|
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), |
|
|
input_resolution=(patches_resolution[0] // (2 ** i_layer), |
|
|
patches_resolution[1] // (2 ** i_layer)), |
|
|
depth=depths[i_layer], |
|
|
num_heads=num_heads[i_layer], |
|
|
window_size=self.window_size[i_layer], |
|
|
mlp_ratio=self.mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
|
norm_layer=norm_layer, |
|
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
|
use_checkpoint=use_checkpoint, |
|
|
bottleneck=bottleneck) |
|
|
self.layers.append(layer) |
|
|
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
self.avgpool = nn.AdaptiveAvgPool1d(1) |
|
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {'absolute_pos_embed', 'frame_pos_embed'} |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay_keywords(self): |
|
|
return {'relative_position_bias_table'} |
|
|
|
|
|
def create_thumbnail(self, x): |
|
|
|
|
|
input_size = x.shape[-2:] |
|
|
if input_size != to_2tuple(self.img_size): |
|
|
x = nn.functional.interpolate(x, size=self.img_size,mode='bilinear') |
|
|
x = rearrange(x, 'b (th tw c) h w -> b c (th h) (tw w)', th=self.thumbnail_rows, c=3) |
|
|
return x |
|
|
|
|
|
def pad_frames(self, x): |
|
|
frame_num = self.duration - self.frame_padding |
|
|
x = x.view((-1,3*frame_num)+x.size()[2:]) |
|
|
x_padding = torch.zeros((x.shape[0], 3*self.frame_padding) + x.size()[2:]).cuda() |
|
|
x = torch.cat((x, x_padding), dim=1) |
|
|
assert x.shape[1] == 3 * self.duration, 'frame number %d not the same as adjusted input size %d' % (x.shape[1], 3 * self.duration) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def create_image_pos_embed(self): |
|
|
img_rows, img_cols = self.patches_resolution |
|
|
_, _, T = self.frame_pos_embed.shape |
|
|
rows = img_rows // self.thumbnail_rows |
|
|
cols = img_cols // (self.duration // self.thumbnail_rows) |
|
|
img_pos_embed = torch.zeros(img_rows, img_cols, T).cuda() |
|
|
|
|
|
for i in range(self.duration): |
|
|
r_indx = (i // self.thumbnail_rows) * rows |
|
|
c_indx = (i % self.thumbnail_rows) * cols |
|
|
img_pos_embed[r_indx:r_indx+rows,c_indx:c_indx+cols] = self.frame_pos_embed[0, i] |
|
|
|
|
|
return img_pos_embed.reshape(-1, T) |
|
|
|
|
|
def forward_features(self, x): |
|
|
|
|
|
|
|
|
|
|
|
b, t, _, h, w = x.shape |
|
|
x = x.view(b, t*3, h, w) |
|
|
if self.frame_padding > 0: |
|
|
x = self.pad_frames(x) |
|
|
else: |
|
|
x = x.view((-1,3*self.duration)+x.size()[2:]) |
|
|
|
|
|
if self.image_mode: |
|
|
x = self.create_thumbnail(x) |
|
|
x = nn.functional.interpolate(x, size=self.img_size,mode='bilinear') |
|
|
else: |
|
|
x = rearrange(x, 'b (n t c) h w -> (b n t) c h w', t=self.duration, c=3) |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
if self.ape: |
|
|
|
|
|
img_pos_embed = self.create_image_pos_embed() |
|
|
x = x + img_pos_embed |
|
|
x = self.pos_drop(x) |
|
|
|
|
|
for layer in self.layers: |
|
|
x = layer(x) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.avgpool(x.transpose(1, 2)) |
|
|
x = torch.flatten(x, 1) |
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.forward_features(x) |
|
|
x = self.head(x) |
|
|
if not self.image_mode: |
|
|
x = x.view(-1, self.duration, self.num_classes) |
|
|
x = torch.mean(x, dim=1) |
|
|
return x |
|
|
|
|
|
def flops(self): |
|
|
flops = 0 |
|
|
flops += self.patch_embed.flops() |
|
|
for i, layer in enumerate(self.layers): |
|
|
flops += layer.flops() |
|
|
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) |
|
|
flops += self.num_features * self.num_classes |
|
|
return flops |
|
|
|
|
|
|
|
|
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, img_size=224, num_patches=196, |
|
|
pretrained_window_size=7, pretrained_model="", strict=True): |
|
|
if cfg is None: |
|
|
cfg = getattr(model, 'default_cfg') |
|
|
if cfg is None or 'url' not in cfg or not cfg['url']: |
|
|
_logger.warning("Pretrained model URL is invalid, using random initialization.") |
|
|
return |
|
|
|
|
|
if len(pretrained_model) == 0: |
|
|
|
|
|
|
|
|
state_dict = torch.load('/mnt/new_nas/yansan/models/swin_base_patch4_window7_224_22k.pth', map_location='cpu') |
|
|
else: |
|
|
try: |
|
|
state_dict = load_state_dict(pretrained_model)['model'] |
|
|
except: |
|
|
state_dict = load_state_dict(pretrained_model) |
|
|
|
|
|
if filter_fn is not None: |
|
|
state_dict = filter_fn(state_dict) |
|
|
|
|
|
if in_chans == 1: |
|
|
conv1_name = cfg['first_conv'] |
|
|
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name) |
|
|
conv1_weight = state_dict[conv1_name + '.weight'] |
|
|
conv1_type = conv1_weight.dtype |
|
|
conv1_weight = conv1_weight.float() |
|
|
O, I, J, K = conv1_weight.shape |
|
|
if I > 3: |
|
|
assert conv1_weight.shape[1] % 3 == 0 |
|
|
|
|
|
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) |
|
|
conv1_weight = conv1_weight.sum(dim=2, keepdim=False) |
|
|
else: |
|
|
conv1_weight = conv1_weight.sum(dim=1, keepdim=True) |
|
|
conv1_weight = conv1_weight.to(conv1_type) |
|
|
state_dict[conv1_name + '.weight'] = conv1_weight |
|
|
elif in_chans != 3: |
|
|
conv1_name = cfg['first_conv'] |
|
|
conv1_weight = state_dict[conv1_name + '.weight'] |
|
|
conv1_type = conv1_weight.dtype |
|
|
conv1_weight = conv1_weight.float() |
|
|
O, I, J, K = conv1_weight.shape |
|
|
if I != 3: |
|
|
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name) |
|
|
del state_dict[conv1_name + '.weight'] |
|
|
strict = False |
|
|
else: |
|
|
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name) |
|
|
repeat = int(math.ceil(in_chans / 3)) |
|
|
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] |
|
|
conv1_weight *= (3 / float(in_chans)) |
|
|
conv1_weight = conv1_weight.to(conv1_type) |
|
|
state_dict[conv1_name + '.weight'] = conv1_weight |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
classifier_name = cfg['classifier'] |
|
|
if num_classes == 1000 and cfg['num_classes'] == 1001: |
|
|
|
|
|
classifier_weight = state_dict[classifier_name + '.weight'] |
|
|
state_dict[classifier_name + '.weight'] = classifier_weight[1:] |
|
|
classifier_bias = state_dict[classifier_name + '.bias'] |
|
|
state_dict[classifier_name + '.bias'] = classifier_bias[1:] |
|
|
elif num_classes != cfg['num_classes']: |
|
|
|
|
|
del state_dict['model'][classifier_name + '.weight'] |
|
|
del state_dict['model'][classifier_name + '.bias'] |
|
|
strict = False |
|
|
''' |
|
|
## Resizing the positional embeddings in case they don't match |
|
|
if img_size != cfg['input_size'][1]: |
|
|
pos_embed = state_dict['pos_embed'] |
|
|
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1) |
|
|
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2) |
|
|
new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode='nearest') |
|
|
new_pos_embed = new_pos_embed.transpose(1, 2) |
|
|
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) |
|
|
state_dict['pos_embed'] = new_pos_embed |
|
|
''' |
|
|
|
|
|
|
|
|
window_size = (model.window_size)[0] |
|
|
print (pretrained_window_size, window_size) |
|
|
|
|
|
new_state_dict = state_dict['model'].copy() |
|
|
for key in state_dict['model']: |
|
|
if 'attn_mask' in key: |
|
|
del new_state_dict[key] |
|
|
|
|
|
|
|
|
if 1: |
|
|
if 'relative_position_index' in key: |
|
|
del new_state_dict[key] |
|
|
|
|
|
|
|
|
if 'relative_position_bias_table' in key: |
|
|
|
|
|
pretrained_table = state_dict['model'][key] |
|
|
pretrained_table_size = int(math.sqrt(pretrained_table.shape[0])) |
|
|
table_size = int(math.sqrt(model.state_dict()[key].shape[0])) |
|
|
|
|
|
if pretrained_table_size != table_size: |
|
|
table = pretrained_table.permute(1, 0).view(1, -1, pretrained_table_size, pretrained_table_size) |
|
|
table = nn.functional.interpolate(table, size=table_size, mode='bilinear') |
|
|
table = table.view(-1, table_size*table_size).permute(1, 0) |
|
|
new_state_dict[key] = table |
|
|
|
|
|
for key in model.state_dict(): |
|
|
if 'bottleneck_norm' in key: |
|
|
attn_key = key.replace('bottleneck_norm','norm1') |
|
|
|
|
|
new_state_dict[key] = new_state_dict[attn_key] |
|
|
|
|
|
''' |
|
|
for key in new_state_dict: |
|
|
if key not in model.state_dict(): |
|
|
print ('----', key) |
|
|
else: |
|
|
print ('++++', key) |
|
|
print ('====================') |
|
|
for key in model.state_dict(): |
|
|
if key not in new_state_dict: |
|
|
print ('----', key) |
|
|
else: |
|
|
print ('++++', key) |
|
|
''' |
|
|
|
|
|
print ('loading weights....') |
|
|
|
|
|
model_dict = model.state_dict() |
|
|
pretrained_dict = {k: v for k, v in new_state_dict.items() if k in model_dict and model_dict[k].size() == v.size()} |
|
|
model_dict.update(pretrained_dict) |
|
|
model.load_state_dict(model_dict, strict=False) |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=4): |
|
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
|
out_dict = {} |
|
|
for k, v in state_dict.items(): |
|
|
if 'patch_embed.proj.weight' in k: |
|
|
if v.shape[-1] != patch_size: |
|
|
patch_size = v.shape[-1] |
|
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
|
out_dict[k] = v |
|
|
return out_dict |
|
|
|
|
|
|
|
|
def _create_vision_transformer(variant, pretrained=False, pretrained_window_size=7, **kwargs): |
|
|
default_cfg = default_cfgs[variant] |
|
|
default_num_classes = default_cfg['num_classes'] |
|
|
default_img_size = default_cfg['input_size'][-1] |
|
|
|
|
|
num_classes = kwargs.pop('num_classes', default_num_classes) |
|
|
img_size = kwargs.pop('img_size', default_img_size) |
|
|
repr_size = kwargs.pop('representation_size', None) |
|
|
|
|
|
model_cls = SwinTransformer |
|
|
model = model_cls(img_size=img_size, num_classes=num_classes, **kwargs) |
|
|
model.default_cfg = default_cfg |
|
|
|
|
|
|
|
|
if pretrained: |
|
|
load_pretrained( |
|
|
model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3), |
|
|
filter_fn=_conv_filter, |
|
|
img_size=img_size, |
|
|
pretrained_window_size=pretrained_window_size, |
|
|
pretrained_model='' |
|
|
) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
@register_model |
|
|
def TALL_SWIN(pretrained=False, **kwargs): |
|
|
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). |
|
|
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. |
|
|
""" |
|
|
temporal_module_name = kwargs.pop('temporal_module_name', None) |
|
|
temporal_attention_only = kwargs.pop('temporal_attention_only', None) |
|
|
temporal_heads_scale = kwargs.pop('temporal_heads_scale', 1.0) |
|
|
temporal_mlp_scale = kwargs.pop('temporal_mlp_scale', 1.0) |
|
|
rel_pos = kwargs.pop('rel_pos', False) |
|
|
token_maks = kwargs.pop('token_mask', False) |
|
|
frame_cls_tokens = kwargs.pop('frame_cls_tokens', 1) |
|
|
kwargs.pop('hub_attention', '') |
|
|
kwargs.pop('hub_aggregation', '') |
|
|
kwargs.pop('spatial_hub_size', (-1, -1)) |
|
|
kwargs.pop('temporal_pooling', None) |
|
|
kwargs.pop('window_size', -1) |
|
|
|
|
|
embed_dim = 128 |
|
|
mlp_ratio = 4. |
|
|
|
|
|
patch_size=4 |
|
|
window_size=[14,14,14,7] |
|
|
depths = [2, 2, 18, 2] |
|
|
num_heads = [4, 8, 16, 32] |
|
|
use_checkpoint=kwargs.pop('use_checkpoint', False) |
|
|
ape = kwargs.pop('hpe_to_token', False) |
|
|
bottleneck = True if kwargs.pop('bottleneck', None) is not None else False |
|
|
model_kwargs = dict(patch_size=patch_size, window_size=window_size, embed_dim=embed_dim, depths=depths, num_heads=num_heads, mlp_ratio=mlp_ratio, |
|
|
use_checkpoint=use_checkpoint, ape=ape, bottleneck=bottleneck, **kwargs) |
|
|
print(model_kwargs) |
|
|
model = _create_vision_transformer('swin_base_patch4_window7_224_22k', pretrained=pretrained, pretrained_window_size=7, **model_kwargs) |
|
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
|
dummy_input = torch.randn(4,8,3,224,224) |
|
|
model = TALL_SWIN(pretrained=True) |
|
|
print(model(dummy_input)) |
|
|
|