import random import argparse import yaml import torch import os import util from util import build_model, train_one_epoch from dataloader2 import generate_dataset_loader import torch.nn as nn from torch.optim.lr_scheduler import StepLR, LambdaLR, MultiStepLR def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--config', dest='config', help='settings of detector in yaml format') args = parser.parse_args() return args if __name__ == '__main__': args = get_arguments() assert (os.path.exists(args.config)) cfg = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) print("******* Building models. *******") print(cfg) model = util.build_model(cfg['model']) model = model.cuda() if cfg['tuning_mode'] == 'lp': for param in model.encoder.parameters(): param.requires_grad = False model = torch.nn.DataParallel(model) optimizer = torch.optim.AdamW(model.parameters(), lr=cfg['lr'], weight_decay=1e-8) scheduler = MultiStepLR(optimizer, milestones=[20, 25], gamma=0.1) loss = nn.BCEWithLogitsLoss() trMaxEpoch = cfg['max_epoch'] snapshot_path = cfg['save_dir'] if not os.path.exists(snapshot_path): os.makedirs(snapshot_path) max_epoch, max_acc = 0, 0 for epochID in range(0, trMaxEpoch): print("******* Training epoch", str(epochID)," *******") print("******* Building datasets. *******") train_loader, val_loader = generate_dataset_loader(cfg) max_epoch, max_acc, epoch_time = train_one_epoch(cfg, model, loss, scheduler, optimizer, epochID, max_epoch, max_acc, train_loader, val_loader, snapshot_path) print("******* Ending epoch", str(epochID)," Time ", str(epoch_time), "*******")