Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,138 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
|
| 153 |
-
|
|
|
|
| 154 |
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
##
|
| 172 |
|
| 173 |
-
|
|
|
|
| 174 |
|
| 175 |
-
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
|
|
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
|
|
|
|
| 184 |
|
| 185 |
-
|
|
|
|
| 186 |
|
| 187 |
-
[More Information Needed]
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
|
|
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- finance
|
| 5 |
+
- xnet
|
| 6 |
+
- phi
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
datasets:
|
| 9 |
+
- TheFinAI/Fino1_Reasoning_Path_FinQA
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
base_model:
|
| 13 |
+
- microsoft/Phi-4-reasoning-plus
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# Fine-tuning Phi-4-reasoning-plus on FinQA Dataset
|
| 18 |
|
| 19 |
+
This project fine-tunes the [`microsoft/Phi-4-reasoning-plus`](https://huggingface.co/microsoft/Phi-4-reasoning-plus) model using a medical reasoning dataset (`TheFinAI/Fino1_Reasoning_Path_FinQA`).
|
| 20 |
|
| 21 |
+
---
|
| 22 |
|
| 23 |
+
## Setup
|
| 24 |
|
| 25 |
+
1. Install the required libraries:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
```bash
|
| 28 |
+
pip install -U datasets accelerate peft trl bitsandbytes
|
| 29 |
+
pip install -U transformers
|
| 30 |
+
pip install huggingface_hub[hf_xet]
|
| 31 |
+
```
|
| 32 |
|
| 33 |
+
2. Authenticate with Hugging Face Hub:
|
| 34 |
|
| 35 |
+
Make sure your Hugging Face token is stored in an environment variable:
|
| 36 |
|
| 37 |
+
```bash
|
| 38 |
+
export HF_TOKEN=your_huggingface_token
|
| 39 |
+
```
|
| 40 |
|
| 41 |
+
The notebook will automatically log you in using this token.
|
| 42 |
|
| 43 |
+
---
|
| 44 |
|
| 45 |
+
## How to Run
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
1. **Load the Model and Tokenizer**
|
| 48 |
+
The script downloads the full Phi-4-reasoning-plus model.
|
| 49 |
|
| 50 |
+
2. **Prepare the Dataset**
|
| 51 |
+
- The notebook uses `TheFinAI/Fino1_Reasoning_Path_FinQA` (first 1000 samples).
|
| 52 |
+
- It formats each example into an **instruction-following prompt** with step-by-step chain-of-thought reasoning.
|
| 53 |
|
| 54 |
+
3. **Fine-tuning**
|
| 55 |
+
- Fine-tuning is set up with PEFT (LoRA / Adapter Tuning style) to modify a small subset of model parameters.
|
| 56 |
+
- TRL (Transformer Reinforcement Learning) is used to fine-tune efficiently.
|
| 57 |
|
| 58 |
+
4. **Push Fine-tuned Model**
|
| 59 |
+
- After training, the fine-tuned model and tokenizer are pushed back to your Hugging Face account.
|
| 60 |
|
| 61 |
+
---
|
| 62 |
|
| 63 |
+
>> **Here is the training notebook:** [Fine_tuning_Phi-4-Reasoning-Plus](https://huggingface.co/kingabzpro/Phi-4-Reasoning-Plus-FinQA-COT/blob/main/fine-tuning-phi-4-reasoning.ipynb)
|
| 64 |
|
| 65 |
+
## Model Configuration
|
| 66 |
|
| 67 |
+
- **Base Model**: `microsoft/Phi-4-reasoning-plus`
|
| 68 |
+
- **Training**: PEFT + TRL
|
| 69 |
+
- **Dataset**: 1000 examples FinQA reasoning dataset
|
| 70 |
|
| 71 |
+
---
|
| 72 |
|
| 73 |
+
## Notes
|
| 74 |
|
| 75 |
+
- **GPU Required**: Make sure you have access to 1X A100s. Get it from RunPod for an hours. Training took only 7 minutes.
|
| 76 |
+
- **Environment**: The notebook expects an environment where NVIDIA CUDA drivers are available (`nvidia-smi` check is included).
|
| 77 |
|
| 78 |
+
---
|
| 79 |
|
| 80 |
+
## Example Prompt Format
|
| 81 |
+
|
| 82 |
+
```
|
| 83 |
+
<|im_start|>system<|im_sep|>
|
| 84 |
+
Below is an instruction that describes a task, paired with an input that provides further context.
|
| 85 |
+
Write a response that appropriately completes the request.
|
| 86 |
+
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
| 87 |
+
<|im_end|>
|
| 88 |
+
<|im_start|>user<|im_sep|>
|
| 89 |
+
{}<|im_end|>
|
| 90 |
+
<|im_start|>assistant<|im_sep|>
|
| 91 |
+
<think>
|
| 92 |
+
{}
|
| 93 |
+
</think>
|
| 94 |
+
{}
|
| 95 |
+
```
|
| 96 |
|
| 97 |
+
---
|
| 98 |
+
## Usage Script (not-tested)
|
| 99 |
|
| 100 |
+
```python
|
| 101 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 102 |
+
from peft import PeftModel
|
| 103 |
+
import torch
|
| 104 |
|
| 105 |
+
# Base model (original model from Meta)
|
| 106 |
+
base_model_id = "microsoft/Phi-4-reasoning-plus"
|
| 107 |
|
| 108 |
+
# Your fine-tuned LoRA adapter repository
|
| 109 |
+
lora_adapter_id = "kingabzpro/Phi-4-Reasoning-Plus-FinQA-COT"
|
| 110 |
|
|
|
|
| 111 |
|
| 112 |
+
# Load base model
|
| 113 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 114 |
+
base_model_id,
|
| 115 |
+
device_map="auto",
|
| 116 |
+
torch_dtype=torch.bfloat16,
|
| 117 |
+
trust_remote_code=True,
|
| 118 |
+
)
|
| 119 |
|
| 120 |
+
# Attach the LoRA adapter
|
| 121 |
+
model = PeftModel.from_pretrained(
|
| 122 |
+
base_model,
|
| 123 |
+
lora_adapter_id,
|
| 124 |
+
device_map="auto",
|
| 125 |
+
trust_remote_code=True,
|
| 126 |
+
)
|
| 127 |
|
| 128 |
+
# Load tokenizer
|
| 129 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
| 130 |
|
| 131 |
+
# Inference example
|
| 132 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 133 |
+
outputs = model.generate(**inputs, max_new_tokens=1200)
|
| 134 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 135 |
|
| 136 |
+
print(response)
|
| 137 |
|
| 138 |
+
```
|