Commit
·
ca150fa
1
Parent(s):
e2feda4
update model card README.md
Browse files
README.md
CHANGED
|
@@ -1,36 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
language:
|
| 3 |
-
- ur
|
| 4 |
-
|
| 5 |
license: apache-2.0
|
| 6 |
tags:
|
| 7 |
-
-
|
| 8 |
-
- robust-speech-event
|
| 9 |
datasets:
|
| 10 |
-
-
|
| 11 |
-
metrics:
|
| 12 |
-
- wer
|
| 13 |
-
- cer
|
| 14 |
model-index:
|
| 15 |
- name: wav2vec2-large-xls-r-300m-Urdu
|
| 16 |
-
results:
|
| 17 |
-
- task:
|
| 18 |
-
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
|
| 19 |
-
name: Speech Recognition # Optional. Example: Speech Recognition
|
| 20 |
-
dataset:
|
| 21 |
-
type: mozilla-foundation/common_voice_8_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
| 22 |
-
name: Common Voice ur # Required. Example: Common Voice zh-CN
|
| 23 |
-
args: ur # Optional. Example: zh-CN
|
| 24 |
-
metrics:
|
| 25 |
-
- type: wer # Required. Example: wer
|
| 26 |
-
value: 51.96 # Required. Example: 20.90
|
| 27 |
-
name: Test WER With LM # Optional. Example: Test WER
|
| 28 |
-
# Optional. Example for BLEU: max_order
|
| 29 |
-
- type: cer # Required. Example: wer
|
| 30 |
-
value: 22.69 # Required. Example: 20.90
|
| 31 |
-
name: Test CER # Optional. Example: Test WER
|
| 32 |
-
|
| 33 |
-
|
| 34 |
---
|
| 35 |
|
| 36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -40,43 +16,48 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 40 |
|
| 41 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
| 42 |
It achieves the following results on the evaluation set:
|
| 43 |
-
- Loss:
|
| 44 |
-
- Wer: 0.
|
| 45 |
-
- Cer: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
### Training hyperparameters
|
| 50 |
|
| 51 |
The following hyperparameters were used during training:
|
| 52 |
-
- learning_rate: 0.
|
| 53 |
-
- train_batch_size:
|
| 54 |
- eval_batch_size: 8
|
| 55 |
- seed: 42
|
| 56 |
-
- gradient_accumulation_steps:
|
| 57 |
- total_train_batch_size: 64
|
| 58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 59 |
- lr_scheduler_type: linear
|
| 60 |
-
- lr_scheduler_warmup_steps:
|
| 61 |
-
- num_epochs:
|
| 62 |
-
- mixed_precision_training: Native AMP
|
| 63 |
|
| 64 |
### Training results
|
| 65 |
|
| 66 |
-
| Training Loss | Epoch
|
| 67 |
-
|
| 68 |
-
|
|
| 69 |
-
|
|
| 70 |
-
|
|
| 71 |
-
|
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.26 | 58.31 | 700 | 1.5309 | 0.6403 | 0.2726 |
|
| 75 |
-
| 0.2025 | 66.63 | 800 | 1.5230 | 0.6310 | 0.2655 |
|
| 76 |
-
| 0.171 | 74.94 | 900 | 1.5578 | 0.6336 | 0.2632 |
|
| 77 |
-
| 0.1511 | 83.31 | 1000 | 1.5733 | 0.6321 | 0.2635 |
|
| 78 |
-
| 0.1352 | 91.63 | 1100 | 1.6022 | 0.6255 | 0.2608 |
|
| 79 |
-
| 0.1192 | 99.94 | 1200 | 1.5867 | 0.6240 | 0.2579 |
|
| 80 |
|
| 81 |
|
| 82 |
### Framework versions
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
+
- generated_from_trainer
|
|
|
|
| 5 |
datasets:
|
| 6 |
+
- common_voice
|
|
|
|
|
|
|
|
|
|
| 7 |
model-index:
|
| 8 |
- name: wav2vec2-large-xls-r-300m-Urdu
|
| 9 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 16 |
|
| 17 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
| 18 |
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.9889
|
| 20 |
+
- Wer: 0.5607
|
| 21 |
+
- Cer: 0.2370
|
| 22 |
+
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
More information needed
|
| 26 |
+
|
| 27 |
+
## Intended uses & limitations
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Training and evaluation data
|
| 32 |
|
| 33 |
+
More information needed
|
| 34 |
|
| 35 |
+
## Training procedure
|
| 36 |
|
| 37 |
### Training hyperparameters
|
| 38 |
|
| 39 |
The following hyperparameters were used during training:
|
| 40 |
+
- learning_rate: 0.0001
|
| 41 |
+
- train_batch_size: 32
|
| 42 |
- eval_batch_size: 8
|
| 43 |
- seed: 42
|
| 44 |
+
- gradient_accumulation_steps: 2
|
| 45 |
- total_train_batch_size: 64
|
| 46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 47 |
- lr_scheduler_type: linear
|
| 48 |
+
- lr_scheduler_warmup_steps: 1000
|
| 49 |
+
- num_epochs: 200
|
|
|
|
| 50 |
|
| 51 |
### Training results
|
| 52 |
|
| 53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
| 54 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
|
| 55 |
+
| 3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 |
|
| 56 |
+
| 2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 |
|
| 57 |
+
| 1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 |
|
| 58 |
+
| 0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 |
|
| 59 |
+
| 0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 |
|
| 60 |
+
| 0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
### Framework versions
|