Upload Merger.py
Browse files
Merger.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#coding:utf-8
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 6 |
+
from safetensors.torch import save_file, load_file
|
| 7 |
+
|
| 8 |
+
DIR_CACHE = r"E:\llm_baack\cache"
|
| 9 |
+
DIR_OFFLOAD = r"E:\llm_baack\offload"
|
| 10 |
+
DIR_SAVE = r"E:\llm_baack\safetensors"
|
| 11 |
+
|
| 12 |
+
for _dir in [DIR_CACHE, DIR_OFFLOAD, DIR_SAVE]:
|
| 13 |
+
if not os.path.exists(_dir):
|
| 14 |
+
os.makedirs(_dir)
|
| 15 |
+
|
| 16 |
+
MODEL_SUBJ = "aaditya/Llama3-OpenBioLLM-8B"
|
| 17 |
+
MODEL_VECTOR = "aixsatoshi/Llama-3-youko-8b-instruct-chatvector"
|
| 18 |
+
MODEL_BASE = "NousResearch/Meta-Llama-3-8B"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def download_model(model_name):
|
| 22 |
+
s_name_offload = model_name.replace("/", "-")
|
| 23 |
+
dir_offload = os.path.join(DIR_OFFLOAD, s_name_offload)
|
| 24 |
+
if not os.path.exists(dir_offload):
|
| 25 |
+
os.makedirs(dir_offload)
|
| 26 |
+
|
| 27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
model_name,
|
| 29 |
+
cache_dir=DIR_CACHE,
|
| 30 |
+
torch_dtype=torch.bfloat16,
|
| 31 |
+
device_map="cpu",
|
| 32 |
+
offload_folder=dir_offload,
|
| 33 |
+
offload_state_dict=True,
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
)
|
| 36 |
+
model.eval()
|
| 37 |
+
model.hf_device_map
|
| 38 |
+
|
| 39 |
+
model_state_dict = model.state_dict().copy()
|
| 40 |
+
|
| 41 |
+
for key in model_state_dict.keys():
|
| 42 |
+
model_value = model_state_dict[key].clone().to("cpu")
|
| 43 |
+
print(key, model_value.dtype, model_value.shape, model_value)
|
| 44 |
+
break
|
| 45 |
+
|
| 46 |
+
s_name = model_name.replace("/", "-")
|
| 47 |
+
dir_save_safe = os.path.join(DIR_SAVE, f"{s_name}.safetensors")
|
| 48 |
+
save_file(model_state_dict, dir_save_safe)
|
| 49 |
+
|
| 50 |
+
# modelを解放
|
| 51 |
+
del model
|
| 52 |
+
del model_state_dict
|
| 53 |
+
|
| 54 |
+
return dir_save_safe, s_name
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
DIR_MODEL_SUBJ, s_name_subj = download_model(MODEL_SUBJ)
|
| 58 |
+
DIR_MODEL_VECTOR, s_name_vect = download_model(MODEL_VECTOR)
|
| 59 |
+
DIR_MODEL_BASE, s_name_base = download_model(MODEL_BASE)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
d_state_subj = load_file(DIR_MODEL_SUBJ, device="cpu")
|
| 63 |
+
d_state_vector = load_file(DIR_MODEL_VECTOR, device="cpu")
|
| 64 |
+
new_state_dict = d_state_subj
|
| 65 |
+
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
for key in d_state_subj.keys():
|
| 68 |
+
print(key)
|
| 69 |
+
|
| 70 |
+
new_state_dict[key] = (
|
| 71 |
+
new_state_dict[key].to("cuda") + d_state_vector[key].to("cuda")
|
| 72 |
+
).to("cpu")
|
| 73 |
+
|
| 74 |
+
new_state_dict
|
| 75 |
+
del d_state_subj, d_state_vector
|
| 76 |
+
torch.cuda.empty_cache()
|
| 77 |
+
dir_save_subjpvect = os.path.join(DIR_SAVE, f"{s_name_subj}+{s_name_vect}.safetensors")
|
| 78 |
+
save_file(new_state_dict, dir_save_subjpvect)
|
| 79 |
+
|
| 80 |
+
# モデルの読み込み
|
| 81 |
+
d_state_subj_subjpvect = load_file(dir_save_subjpvect, device="cpu")
|
| 82 |
+
d_state_base = load_file(DIR_MODEL_BASE, device="cpu")
|
| 83 |
+
|
| 84 |
+
# キー名が同じことを確認
|
| 85 |
+
for key_subjpvect, key_base in zip(
|
| 86 |
+
d_state_subj_subjpvect.keys(), d_state_base.keys()
|
| 87 |
+
):
|
| 88 |
+
assert key_subjpvect == key_base
|
| 89 |
+
|
| 90 |
+
new_state_dict = d_state_subj_subjpvect
|
| 91 |
+
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
for key in new_state_dict.keys():
|
| 94 |
+
print(key)
|
| 95 |
+
|
| 96 |
+
new_state_dict[key] = (
|
| 97 |
+
new_state_dict[key].to("cuda") - d_state_base[key].to("cuda")
|
| 98 |
+
).to("cpu")
|
| 99 |
+
|
| 100 |
+
new_state_dict
|
| 101 |
+
save_file(new_state_dict, os.path.join(DIR_SAVE, f"{s_name_subj}+{s_name_vect}-{s_name_base}.safetensors"))
|
| 102 |
+
|