File size: 4,598 Bytes
f2d0a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a27d7e
f2d0a8e
 
 
 
 
 
 
 
 
 
6a27d7e
 
f2d0a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
6a27d7e
f2d0a8e
 
 
 
 
 
 
6a27d7e
f2d0a8e
 
 
 
 
6a27d7e
 
f2d0a8e
 
6a27d7e
 
f2d0a8e
 
 
6a27d7e
 
f2d0a8e
 
6a27d7e
 
f2d0a8e
 
6a27d7e
f2d0a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from transformers import PretrainedConfig, PreTrainedModel, AutoProcessor, SiglipModel
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

class ExplainerConfig(PretrainedConfig):
    model_type = "explainer"

    def __init__(self, base_model_name='google/siglip2-giant-opt-patch16-384',
                 hidden_dim=768, giant=True, **kwargs):
        self.base_model_name = base_model_name
        self.hidden_dim = hidden_dim
        self.giant = giant
        super().__init__(**kwargs)

class SigLIPBBoxRegressor(nn.Module):
    def __init__(self, siglip_model, hidden_dim=768, giant=True):
        super().__init__()
        self.siglip = siglip_model

        vision_dim = self.siglip.vision_model.config.hidden_size
        text_dim = self.siglip.text_model.config.hidden_size
        if giant: text_dim = 1536

         # Feature fusion layers
        self.vision_projector = nn.Sequential(
            nn.Linear(vision_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.1)
        )
        self.text_projector = nn.Sequential(
            nn.Linear(text_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.1)
        )
        
        # Cross-modal fusion
        self.fusion_layer = nn.Sequential(
            nn.Linear(hidden_dim*2, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(hidden_dim, hidden_dim//2),
            nn.ReLU(),
            nn.Dropout(0.1)
        )
        self.topleft_regressor = nn.Sequential(
            nn.Linear(hidden_dim//2, 256),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 2), # (x1, y1)
        )
        self.bottomright_regressor = nn.Sequential(
            nn.Linear(hidden_dim//2, 256),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.Linear(128, 2), # (x2, y2)
        )

    def forward(self, pixel_values, input_ids):
        with torch.no_grad():
            outputs = self.siglip(pixel_values=pixel_values, input_ids=input_ids, return_dict=True)
            
        # Extract pooled features
        vision_features = outputs.image_embeds.float()
        text_features = outputs.text_embeds.float()
        
        # Project features

        vision_proj = self.vision_projector(vision_features)
        text_proj = self.text_projector(text_features)
        
        # Fuse modalities
        fused = torch.cat([vision_proj, text_proj], dim=1)
        fused_features = self.fusion_layer(fused)
        
        # Predict bbox
        topleft_pred = self.topleft_regressor(fused_features)
        bottomright_pred = self.bottomright_regressor(fused_features)
        
        return torch.cat([topleft_pred, bottomright_pred], dim=1)

class Explainer(PreTrainedModel):
    config_class = ExplainerConfig

    def __init__(self, config):
        super().__init__(config)
        self.siglip_model = SiglipModel.from_pretrained(config.base_model_name)
        self.bbox_regressor = SigLIPBBoxRegressor(self.siglip_model)
        self.processor = AutoProcessor.from_pretrained(config.base_model_name, use_fast=True)

    def forward(self, pixel_values=None, input_ids=None):
        return self.bbox_regressor(pixel_values, input_ids)

    def predict(self, image, text, device="cuda"):
        self.to(device)
        self.eval()
        inputs = self.processor(
            text=text,
            images=image,
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=64
        )
        pixel_values = inputs["pixel_values"].to(device).half()
        input_ids = inputs["input_ids"].to(device)
        with torch.no_grad():
            pred_bbox = self.forward(pixel_values, input_ids)
        return pred_bbox[0].cpu().numpy().tolist()


    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = kwargs.pop("config", None)
        if config is None:
            config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path)

        model = cls(config)
        
        checkpoint_path = hf_hub_download(
            repo_id=pretrained_model_name_or_path,
            filename="pytorch_model.bin"
        )   
        
        checkpoint = torch.load(checkpoint_path, map_location="cpu")
        model.siglip_model.load_state_dict(checkpoint["siglip_model"])
        model.bbox_regressor.load_state_dict(checkpoint["bbox_regressor"])
        return model