File size: 24,777 Bytes
dd72573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
from typing import Callable, Optional, Union
import torch
from torch import nn
from retention.triton import power_retention, power_retention_inference
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from .configuration_powercoder import PowerCoderConfig
from .kvgs_dynamic_cache import Cache, DynamicCache
class PowerCoderMLP(nn.Module):
def __init__(self, config: PowerCoderConfig):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
self.act = ACT2FN[config.hidden_act]
self.residual_dropout = config.residual_dropout
def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
return hidden_states
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(q.dtype), k_embed.to(k.dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_power_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = 2*torch.log(torch.abs( torch.matmul(query, key_states.transpose(2, 3)) * scaling + 1e-5))
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class PowerCoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PowerCoderConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.chunk_size = config.chunk_size
self.switch_over_seq_len = config.switch_over_seq_len
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.g_proj = nn.Linear(config.hidden_size, config.num_key_value_heads, bias=config.use_bias)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
self.residual_dropout = config.residual_dropout
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
padding_starts: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
interpolate_exp_amount = kwargs.get('interpolate_exp', 0)
assert 0 <= interpolate_exp_amount <= 1, f'{interpolate_exp_amount=}'
run_exp = interpolate_exp_amount > 0
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2)
gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32))
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states, gate_states, state, sum_of_keys = past_key_value.update_kv(key_states, value_states, gate_states, self.layer_idx, cache_kwargs)
if run_exp:
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
exp_attn_output, exp_attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
is_causal=True,
attention_mask=None,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if query_states.shape[2] == 1:
key_len = key_states.shape[2]
power_attn_output, state, sum_of_keys = power_retention_inference(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
gate_states.transpose(1, 2),
initial_state=state,
sum_of_keys=sum_of_keys,
deg=2,
scale=self.scaling,
switch_over_seq_len=self.switch_over_seq_len,
)
if self.switch_over_seq_len is not None and key_len >= self.switch_over_seq_len:
past_key_value.clean_kv(self.layer_idx)
past_key_value.update_state(state, sum_of_keys, self.layer_idx, cache_kwargs)
else:
key_len = key_states.shape[2]
power_attn_output = power_retention(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
gate_states.transpose(1, 2),
deg=2,
scale=self.scaling,
chunk_size=self.chunk_size, # enable chunked prefilling by default
)
if interpolate_exp_amount == 1:
attn_output = exp_attn_output
elif interpolate_exp_amount == 0:
attn_output = power_attn_output
else:
attn_output = interpolate_exp_amount * exp_attn_output + (1 - interpolate_exp_amount) * power_attn_output
assert attn_output.shape == (input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim),\
f'{attn_output.shape=} {(input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim)=}'
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
attn_output = nn.functional.dropout(
attn_output, p=self.residual_dropout, training=self.training
) # diff with Llama
return attn_output
class PowerCoderDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: PowerCoderConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PowerCoderAttention(config=config, layer_idx=layer_idx)
self.mlp = PowerCoderMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
padding_starts: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
padding_starts=padding_starts,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class PowerCoderRotaryEmbedding(nn.Module):
def __init__(self, config: PowerCoderConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class PowerCoderPreTrainedModel(PreTrainedModel):
config: PowerCoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PowerCoderDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": PowerCoderDecoderLayer,
"attentions": PowerCoderAttention,
}
@auto_docstring
class PowerCoderModel(PowerCoderPreTrainedModel):
def __init__(self, config: PowerCoderConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PowerCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.rotary_emb = PowerCoderRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embedding_dropout = config.embedding_dropout
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Always use our local DynamicCache implementation for compatibility with gating
if use_cache:
if past_key_values is None or not isinstance(past_key_values, Cache):
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
# causal_mask = mask_function(
# config=self.config,
# input_embeds=inputs_embeds,
# attention_mask=attention_mask,
# cache_position=cache_position,
# past_key_values=past_key_values,
# position_ids=position_ids,
# )
padding_starts = attention_mask.argmin(-1) if attention_mask is not None else None
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(
hidden_states, p=self.embedding_dropout, training=self.training
) # main diff with Llama
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
hidden_states = decoder_layer(
hidden_states,
padding_starts=padding_starts,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
@auto_docstring
class PowerCoderForCausalLM(PowerCoderPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config, chunk_size=None, switch_over_seq_len=None):
if chunk_size is not None:
config.chunk_size = chunk_size
if switch_over_seq_len is not None:
config.switch_over_seq_len = switch_over_seq_len
super().__init__(config)
self.model = PowerCoderModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Example:
```python
>>> from transformers import AutoTokenizer, PowerCoderForCausalLM
>>> model = PowerCoderForCausalLM.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```
Args:
input_ids (`Optional[torch.LongTensor]`, *optional*):
Indices of input sequence tokens in the vocabulary.
attention_mask (`Optional[torch.Tensor]`, *optional*):
Mask to avoid performing attention on padding token indices.
position_ids (`Optional[torch.LongTensor]`, *optional*):
Indices of positions of each input sequence tokens.
past_key_values (`Optional[Cache]`, *optional*):
Cache containing pre-computed key and value states for attention layers, used for faster inference.
If `use_cache` is True, the cache will be used and updated with new key/value states.
inputs_embeds (`Optional[torch.FloatTensor]`, *optional*):
Pre-computed input embeddings. Useful for scenarios where you want to compute embeddings separately.
labels (`Optional[torch.LongTensor]`, *optional*):
Labels for computing language modeling loss.
use_cache (`Optional[bool]`, *optional*):
If True, past key/value states are returned and can be used for future predictions.
cache_position (`Optional[torch.LongTensor]`, *optional*):
Position indices for cached key/value states when using incremental decoding.
logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0):
Number of logits to compute from the end of the sequence, or specific indices to compute.
**kwargs:
Additional arguments passed to the underlying model's forward method.
Returns:
`CausalLMOutputWithPast`: A dataclass containing:
- loss (`Optional[torch.FloatTensor]`): Language modeling loss if labels were provided.
- logits (`torch.FloatTensor`): Prediction scores for the vocabulary.
- past_key_values (`Optional[Cache]`): Updated key/value states for attention layers if use_cache=True.
- hidden_states (`Optional[Tuple[torch.FloatTensor]]`): Model's hidden states.
- attentions (`Optional[Tuple[torch.FloatTensor]]`): Attention weights if output_attentions=True.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class PowerCoderForSequenceClassification(GenericForSequenceClassification, PowerCoderPreTrainedModel):
pass
class PowerCoderForTokenClassification(GenericForTokenClassification, PowerCoderPreTrainedModel):
pass
__all__ = [
"PowerCoderForCausalLM",
"PowerCoderModel",
"PowerCoderPreTrainedModel",
"PowerCoderForSequenceClassification",
"PowerCoderForTokenClassification",
]
|