File size: 24,777 Bytes
dd72573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

from typing import Callable, Optional, Union

import torch
from torch import nn

from retention.triton import power_retention, power_retention_inference

from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
    GenericForSequenceClassification,
    GenericForTokenClassification,
    GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from .configuration_powercoder import PowerCoderConfig
from .kvgs_dynamic_cache import Cache, DynamicCache

class PowerCoderMLP(nn.Module):
    def __init__(self, config: PowerCoderConfig):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
        self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
        self.act = ACT2FN[config.hidden_act]
        self.residual_dropout = config.residual_dropout

    def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
        return hidden_states


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed.to(q.dtype), k_embed.to(k.dtype)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_power_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = 2*torch.log(torch.abs( torch.matmul(query, key_states.transpose(2, 3)) * scaling + 1e-5))
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class PowerCoderAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: PowerCoderConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.chunk_size = config.chunk_size
        self.switch_over_seq_len = config.switch_over_seq_len
        self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
        self.g_proj = nn.Linear(config.hidden_size, config.num_key_value_heads,                 bias=config.use_bias)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
        self.residual_dropout = config.residual_dropout

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        padding_starts: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)
        interpolate_exp_amount = kwargs.get('interpolate_exp', 0)
        assert 0 <= interpolate_exp_amount <= 1, f'{interpolate_exp_amount=}'
        run_exp = interpolate_exp_amount > 0

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2)
        gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32))

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states, gate_states, state, sum_of_keys = past_key_value.update_kv(key_states, value_states, gate_states, self.layer_idx, cache_kwargs)

        if run_exp:
            attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]

            exp_attn_output, exp_attn_weights = attention_interface(
                self,
                query_states,
                key_states,
                value_states,
                is_causal=True,
                attention_mask=None,
                dropout=0.0 if not self.training else self.attention_dropout,
                scaling=self.scaling,
                **kwargs,
            )

        if query_states.shape[2] == 1:
            key_len = key_states.shape[2]
            power_attn_output, state, sum_of_keys = power_retention_inference(
                query_states.transpose(1, 2),
                key_states.transpose(1, 2),
                value_states.transpose(1, 2),
                gate_states.transpose(1, 2),
                initial_state=state,
                sum_of_keys=sum_of_keys,
                deg=2,
                scale=self.scaling,
                switch_over_seq_len=self.switch_over_seq_len,
            )
            if self.switch_over_seq_len is not None and key_len >= self.switch_over_seq_len:
                past_key_value.clean_kv(self.layer_idx)
                past_key_value.update_state(state, sum_of_keys, self.layer_idx, cache_kwargs)

        else:
            key_len = key_states.shape[2]
            power_attn_output = power_retention(
                query_states.transpose(1, 2),
                key_states.transpose(1, 2),
                value_states.transpose(1, 2),
                gate_states.transpose(1, 2),
                deg=2,
                scale=self.scaling,
                chunk_size=self.chunk_size, # enable chunked prefilling by default
            )

        if interpolate_exp_amount == 1:
            attn_output = exp_attn_output
        elif interpolate_exp_amount == 0:
            attn_output = power_attn_output
        else:
            attn_output = interpolate_exp_amount * exp_attn_output + (1 - interpolate_exp_amount) * power_attn_output

        assert attn_output.shape == (input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim),\
            f'{attn_output.shape=} {(input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim)=}'
        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        attn_output = nn.functional.dropout(
            attn_output, p=self.residual_dropout, training=self.training
        )  # diff with Llama

        return attn_output


class PowerCoderDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: PowerCoderConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = PowerCoderAttention(config=config, layer_idx=layer_idx)
        self.mlp = PowerCoderMLP(config)
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)

    def forward(
        self,
        hidden_states: torch.Tensor,
        padding_starts: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[TransformersKwargs],
    ) -> tuple[torch.Tensor]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            padding_starts=padding_starts,
            position_ids=position_ids,
            past_key_value=past_key_value,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = residual + hidden_states
        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class PowerCoderRotaryEmbedding(nn.Module):
    def __init__(self, config: PowerCoderConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


@auto_docstring
class PowerCoderPreTrainedModel(PreTrainedModel):
    config: PowerCoderConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["PowerCoderDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_flex_attn = True

    _can_compile_fullgraph = True
    _supports_attention_backend = True
    _can_record_outputs = {
        "hidden_states": PowerCoderDecoderLayer,
        "attentions": PowerCoderAttention,
    }


@auto_docstring
class PowerCoderModel(PowerCoderPreTrainedModel):
    def __init__(self, config: PowerCoderConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [PowerCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
        self.rotary_emb = PowerCoderRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.embedding_dropout = config.embedding_dropout

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> BaseModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # Always use our local DynamicCache implementation for compatibility with gating
        if use_cache:
            if past_key_values is None or not isinstance(past_key_values, Cache):
                past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
        # causal_mask = mask_function(
        #     config=self.config,
        #     input_embeds=inputs_embeds,
        #     attention_mask=attention_mask,
        #     cache_position=cache_position,
        #     past_key_values=past_key_values,
        #     position_ids=position_ids,
        # )
        padding_starts = attention_mask.argmin(-1) if attention_mask is not None else None

        hidden_states = inputs_embeds
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.embedding_dropout, training=self.training
        )  # main diff with Llama

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
            hidden_states = decoder_layer(
                hidden_states,
                padding_starts=padding_starts,
                position_ids=position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
        )


@auto_docstring
class PowerCoderForCausalLM(PowerCoderPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config, chunk_size=None, switch_over_seq_len=None):
        if chunk_size is not None:
            config.chunk_size = chunk_size
        if switch_over_seq_len is not None:
            config.switch_over_seq_len = switch_over_seq_len
        super().__init__(config)
        self.model = PowerCoderModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ) -> CausalLMOutputWithPast:
        r"""
        Example:

        ```python
        >>> from transformers import AutoTokenizer, PowerCoderForCausalLM

        >>> model = PowerCoderForCausalLM.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```

        Args:
            input_ids (`Optional[torch.LongTensor]`, *optional*):
                Indices of input sequence tokens in the vocabulary.
            attention_mask (`Optional[torch.Tensor]`, *optional*):
                Mask to avoid performing attention on padding token indices.
            position_ids (`Optional[torch.LongTensor]`, *optional*):
                Indices of positions of each input sequence tokens.
            past_key_values (`Optional[Cache]`, *optional*):
                Cache containing pre-computed key and value states for attention layers, used for faster inference.
                If `use_cache` is True, the cache will be used and updated with new key/value states.
            inputs_embeds (`Optional[torch.FloatTensor]`, *optional*):
                Pre-computed input embeddings. Useful for scenarios where you want to compute embeddings separately.
            labels (`Optional[torch.LongTensor]`, *optional*):
                Labels for computing language modeling loss.
            use_cache (`Optional[bool]`, *optional*):
                If True, past key/value states are returned and can be used for future predictions.
            cache_position (`Optional[torch.LongTensor]`, *optional*):
                Position indices for cached key/value states when using incremental decoding.
            logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0):
                Number of logits to compute from the end of the sequence, or specific indices to compute.
            **kwargs:
                Additional arguments passed to the underlying model's forward method.

        Returns:
            `CausalLMOutputWithPast`: A dataclass containing:
                - loss (`Optional[torch.FloatTensor]`): Language modeling loss if labels were provided.
                - logits (`torch.FloatTensor`): Prediction scores for the vocabulary.
                - past_key_values (`Optional[Cache]`): Updated key/value states for attention layers if use_cache=True.
                - hidden_states (`Optional[Tuple[torch.FloatTensor]]`): Model's hidden states.
                - attentions (`Optional[Tuple[torch.FloatTensor]]`): Attention weights if output_attentions=True.
        """
        outputs: BaseModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class PowerCoderForSequenceClassification(GenericForSequenceClassification, PowerCoderPreTrainedModel):
    pass


class PowerCoderForTokenClassification(GenericForTokenClassification, PowerCoderPreTrainedModel):
    pass


__all__ = [
    "PowerCoderForCausalLM",
    "PowerCoderModel",
    "PowerCoderPreTrainedModel",
    "PowerCoderForSequenceClassification",
    "PowerCoderForTokenClassification",
]